Skip to main content
Log in

Effects of Thyroid Hormones on Electrical and Mechanical Parameters of the Heart

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Despite the fact that effects of thyroid hormones were noticed back in the 80s, the underlying molecular mechanisms have not yet been elucidated. Current review summarizes years of investigations upon molecular targets for the action of thyroid hormones, leading to changes in the electrical and mechanical activity of the heart; changes in hemodynamics, affecting the functioning of the heart muscle, are also touched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bernal, J. and Nunez, J., Thyroid hormones and brain development, Eur. J. Endocrinol., 1995, vol. 133, no. 4, p. 390.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, J. and Lazar, M.A., The mechanism of action of thyroid hormones, Annu. Rev. Physiol., 2000, vol. 62, no. 1, p. 439.

    Article  CAS  PubMed  Google Scholar 

  3. Klein, I., Thyroid hormone and the cardiovascular system, Am. J. Med., 1990, vol. 88, no. 6, p. 631.

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, S.-Y., Leonard, J.L., and Davis, P.J., Molecular aspects of thyroid hormone actions, Endocrinol. Rev., 2010, vol. 31, no. 2, p. 139.

    Article  CAS  Google Scholar 

  5. Brent, G.A., Mechanisms of thyroid hormone action, J. Clin. Invest., 2012, vol. 122, no. 9, p. 3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klein, I. and Danzi, S., Thyroid disease and the heart, Curr. Probl. Cardiol., 2016, vol. 41, no. 2, p. 65.

    Article  PubMed  Google Scholar 

  7. Porter, K.E. and Turner, N.A., Cardiac fibroblasts: At the heart of myocardial remodeling, Pharmacol. Ther., 2009, vol. 123, no. 2, p. 255.

    Article  CAS  PubMed  Google Scholar 

  8. Hulsmans, M., Clauss, S., Xiao, L., et al., Macrophages facilitate electrical conduction in the heart, Cell, 2017, vol. 169, no. 3, p. 510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Croteau, W., Davey, J., Galton, V., et al., Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues, J. Clin. Invest., 1996, vol. 98, no. 2, p. 405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwartz, H.L., Lazar, M.A., and Oppenheimer, J.H., Widespread distribution of immunoreactive thyroid hormone β2 receptor (TRβ2) in the nuclei of extrapituitary rat tissues, J. Biol. Chem., 1994, vol. 269, no. 40, p. 24777.

    CAS  PubMed  Google Scholar 

  11. d’Amati, G., et al., Increased expression of thyroid hormone receptor isoforms in end-stage human congestive heart failure, J. Clin. Endocrinol. Metab., 2001, vol. 86, no. 5, p. 2080.

    Article  PubMed  Google Scholar 

  12. Sakaguchi, Y., Cui, G., and Sen, L., Acute effects of thyroid hormone on inward rectifier potassium channel currents in guinea pig ventricular myocytes, Endocrinology, 1996, vol. 137, no. 11, p. 4744.

    Article  CAS  PubMed  Google Scholar 

  13. Dillmann, W.H., Biochemical basis of thyroid hormone action in the heart, Am. J. Med., 1990, vol. 88, no. 6, p. 626.

    Article  CAS  PubMed  Google Scholar 

  14. Bergh, J., Lin, H.-Y., Lansing, L., et al., Integrin αVβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis, Endocrinology, 2005, vol. 146, no. 7, p. 2864.

    Article  CAS  PubMed  Google Scholar 

  15. Sabatino, L., Iervasi, G., and Pingitore, A., Thyroid hormone and heart failure: from myocardial protection to systemic regulation, Expert Rev. Cardiovasc. Ther., 2014, vol. 12, no. 10, p. 1227.

    Article  CAS  PubMed  Google Scholar 

  16. Davis, P.J., Leonard, J.L., and Davis, F.B., Mechanisms of nongenomic actions of thyroid hormone, Front. Neuroendocrinol., 2008, vol. 29, no. 2, p. 211.

    Article  CAS  PubMed  Google Scholar 

  17. Danzi, S., Ojamaa, K., and Klein, I., Triiodothyronine-mediated myosin heavy chain gene transcription in the heart, Am. J. Physiol.: Circ. Physiol., 2003, vol. 284, no. 6, p. H2255.

    CAS  Google Scholar 

  18. Gustafson, T., Bahl, J., Markham, B., et al., Hormonal regulation of myosin heavy chain and alpha-actin gene expression in cultured fetal rat heart myocytes, J. Biol. Chem., 1987, vol. 262, no. 27, p. 13316.

    CAS  PubMed  Google Scholar 

  19. Watanabe, H., Ma, M., Washizuka, T., et al., Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium, Biochem. Biophys. Res. Commun., 2003, vol. 308, no. 3, p. 439.

    Article  CAS  PubMed  Google Scholar 

  20. Rohrer, D. and Dillmann, W.H., Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum Ca2+-ATPase in the rat heart, J. Biol. Chem., 1988, vol. 263, no. 15, p. 6941.

    CAS  PubMed  Google Scholar 

  21. Ewart, H.S. and Klip, A., Hormonal regulation of the Na(+)-K(+)-ATPase: mechanisms underlying rapid and sustained changes in pump activity, Am. J. Physiol.: Cell Physiol., 1995, vol. 269, no. 2, p. C295.

    Article  CAS  Google Scholar 

  22. Carr, A.N. and Kranias, E.G., Thyroid hormone regulation of calcium cycling proteins, Thyroid, 2002, vol. 12, no. 6, p. 453.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, M., Xu, A., Tokmakejian, S., and Narayanan, N., Thyroid hormone-induced overexpression of functional ryanodine receptors in the rabbit heart, Am. J. Physiol.: Circ. Physiol., 2000, vol. 278, no. 5, p. H1429.

    CAS  Google Scholar 

  24. Biel, M., Cardiac HCN channels structure, function, and modulation, Trends Cardiovasc. Med., 2002, vol. 12, no. 5, p. 206.

    Article  CAS  PubMed  Google Scholar 

  25. Incerpi, S., De Vito, P., Luly, P., et al., Short-term effects of thyroid hormones and 3,5-diiodothyronine on membrane transport systems in chick embryo hepatocytes, Endocrinology, 2002, vol. 143, no. 5, p. 1660.

    Article  CAS  PubMed  Google Scholar 

  26. Boerth, S. and Artman, M., Thyroid hormone regulates Na+-Ca2+ exchanger expression during postnatal maturation and in adult rabbit ventricular myocardium, Cardiovasc. Res., 1996, vol. 31, p. E145.

    Article  CAS  PubMed  Google Scholar 

  27. Kiss, E., Jakab, G., Kranias, E., and Edes, I., Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation, Circ. Res., 1994, vol. 75, no. 2, p. 245.

    Article  CAS  PubMed  Google Scholar 

  28. Davis, P.J. and Davis, F.B., Nongenomic actions of thyroid hormone on the heart, Thyroid, 2002, vol. 12, no. 6, p. 459.

    Article  CAS  PubMed  Google Scholar 

  29. Zipes, D.P. and Jaliff, J., Cardiac Electrophysiology: From Cell to Bedside, Amsterdam: Elsevier, 2014.

    Google Scholar 

  30. Olshausen, K., Bischoff, S., Kahaly, G., et al., Cardiac arrhythmias and heart rate in hyperthyroidism, Am. J. Cardiol., 1989, vol. 63, no. 13, p. 930.

    Article  Google Scholar 

  31. Davis, P.J. and Davis, F.B., Nongenomic actions of thyroid hormone, Thyroid, 1996, vol. 6, no. 5, p. 497.

    Article  CAS  PubMed  Google Scholar 

  32. Lakatta, E.G., Vinogradova, T.M., and Maltsev, V.A., The missing link in the mystery of normal automaticity of cardiac pacemaker cells, Ann. N. Y. Acad. Sci., 2008, vol. 1123, no. 1, p. 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Difrancesco, D., The role of the funny current in pacemaker activity, Circ. Res., 2010, vol. 106, no. 3, p. 434.

    Article  CAS  PubMed  Google Scholar 

  34. Demolombe, S., Marionneau, C., Le Bouter, S., et al., Functional genomics of cardiac ion channel genes, Cardiovasc. Res., 2005, vol. 67, no. 3, p. 438.

    Article  CAS  PubMed  Google Scholar 

  35. Kahaly, G.J. and Dillmann, W.H., Thyroid hormone action in the heart, Endocrinol. Rev., 2005, vol. 26, no. 5, p. 704.

    Article  CAS  Google Scholar 

  36. Tardiff, J., Hewett, T., Factor, S., et al., Expression of the β(slow)-isoform of MHC in the adult mouse heart causes dominant-negative functional effects, Am. J. Physiol.: Circ. Physiol., 2000, vol. 278, no. 2, p. H412.

    CAS  Google Scholar 

  37. Nerbonne, J.M., Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium, J. Physiol., 2000, vol. 525, no. 2, p. 285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grandi, E., Sanguinetti, M., Bartos, D., et al., Potassium channels in the heart: structure, function and regulation, J. Physiol., 2017, vol. 595, no. 7, p. 2209.

    Article  CAS  PubMed  Google Scholar 

  39. Ma, M., Watanabe, K., Watanabe, H., et al., Different gene expression of potassium channels by thyroid hormone and an antithyroid drug between the atrium and ventricle of rats, Jpn. Heart J., 2003, vol. 44, no. 1, p. 101.

    Article  CAS  PubMed  Google Scholar 

  40. Nishiyama, A., Effects of thyroid status on expression of voltage-gated potassium channels in rat left ventricle, Cardiovasc. Res., 1998, vol. 40, no. 2, p. 343.

    Article  CAS  PubMed  Google Scholar 

  41. Shimoni, Y. and Severson, D.L., Thyroid status and potassium currents in rat ventricular myocytes, Am. J. Physiol.: Hear. Circ. Physiol., 1995, vol. 268, no. 2, p. 37.

    Google Scholar 

  42. Purtell, K., Roepke, T.K., and Abbott, G.W., Cardiac arrhythmia and thyroid dysfunction: a novel genetic link, Int. J. Biochem. Cell Biol., 2010, vol. 42, no. 11, p. 1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roepke, T., King, E., Reynal-Neyra, A., et al., Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis, Nat. Med., 2009, vol. 15, no. 10, p. 1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fröhlich, H., Boini, K., Seebohm, G., et al., Hypothyroidism of gene-targeted mice lacking Kcnq1, Pflugers Arch. Eur. J. Physiol., 2011, vol. 461, no. 1, p. 45.

    Article  CAS  Google Scholar 

  45. Charpentier, F., Merot, J., Riochet, D., et al., Adult KCNE1-knockout mice exhibit a mild cardiac cellular phenotype, Biochem. Biophys. Res. Commun., 1998, vol. 251, no. 3, p. 806.

    Article  CAS  PubMed  Google Scholar 

  46. Storey, N., Gentile, S., Ullah, H., et al., Rapid signaling at the plasma membrane by a nuclear receptor for thyroid hormone, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 13, p. 5197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hibino, H., Inanobe, A., Furutani, K., et al., Inwardly rectifying potassium channels: their structure, function, and physiological roles, Physiol. Rev., 2010, vol. 90, no. 1, p. 291.

    Article  CAS  PubMed  Google Scholar 

  48. Lozano-Velasco, E., Wangensteen, R., Quesada, A., et al., Hyperthyroidism, but not hypertension, impairs PITX2 expression leading to Wnt-microRNA-ion channel remodeling, PLoS One, 2017, vol. 12, no. 12, p. e0188473.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Pucci, E., Chiovato, L., and Pinchera, A., Thyroid and lipid metabolism, Int. J. Obes., 2000, vol. 24, suppl. 2, p. S109.

    Article  CAS  Google Scholar 

  50. Kanno, S. and Saffitz, J.E., The role of myocardial gap junctions in electrical conduction and arrhythmogenesis, Cardiovasc. Pathol., 2001, vol. 10, no. 4, p. 169.

    Article  CAS  PubMed  Google Scholar 

  51. Mitašíková, M., Lin, H., Soukup, T., et al., Diabetes and thyroid hormones affect connexin-43 and PKC-ε expression in rat heart atria, Physiol. Res., 2009, vol. 58, no. 2, p. 211.

    PubMed  Google Scholar 

  52. Tribulova, N., Shneyvays, V., Mamedova, L., et al., Enhanced connexin-43 and α-sarcomeric actin expression in cultured heart myocytes exposed to triiodo-L-thyronine, J. Mol. Histol., 2004, vol. 35, no. 5, p. 463.

    Article  CAS  PubMed  Google Scholar 

  53. Harper, M.E. and Seifert, E.L., Thyroid hormone effects on mitochondrial energetics, Thyroid, 2008, vol. 18, no. 2, p. 145.

    Article  CAS  PubMed  Google Scholar 

  54. Goglia, F., Moreno, M., and Lanni, A., Action of thyroid hormones at the cellular level: the mitochondrial target, FEBS Lett., 1999, vol. 452, no. 3, p. 115.

    Article  CAS  PubMed  Google Scholar 

  55. Sinha, R.A., Singh, B.K., and Yen, P.M., Direct effects of thyroid hormones on hepatic lipid metabolism, Nat. Rev. Endocrinol., 2018, vol. 14, no. 5, p. 259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goglia, F., Silvestri, E., and Lanni, A., Thyroid hormones and mitochondria, Biosci. Rep., 2002, vol. 22, no. 1, p. 17.

    Article  CAS  PubMed  Google Scholar 

  57. Birben, E., Sahiner, U., Sackesen, C., et al., Oxidative stress and antioxidant defense, World Allergy Org. J., 2012, vol. 5, no. 1, p. 9.

    Article  CAS  Google Scholar 

  58. Cesarone, M., Belcaro, G., Carratelli, M., et al., A simple test to monitor oxidative stress, Int. Angiol., 1999, vol. 18, no. 2, p. 127.

    CAS  PubMed  Google Scholar 

  59. Das, K. and Chainy, G.B., Modulation of rat liver mitochondrial antioxidant defense system by thyroid hormone, Biochim. Biophys. Acta,Mol. Basis Dis., 2001, vol. 1537, no. 1, p. 1.

    Article  CAS  Google Scholar 

  60. Eghbali, M., Localization of types I, III and IV collagen mRNAs in rat heart cells by in situ hybridization, J. Mol. Cell. Cardiol., 1989, vol. 21, no. 1, p. 103.

    Article  CAS  PubMed  Google Scholar 

  61. Sun, Y., Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart, J. Mol. Cell. Cardiol., 1996, vol. 28, no. 5, p. 851.

    Article  CAS  PubMed  Google Scholar 

  62. Baudino, T., Carver, W., Giles, W., and Borg, T., Cardiac fibroblasts: friend or foe? Am. J. Physiol.: Circ. Physiol., 2006, vol. 291, no. 3, p. H1015.

    CAS  Google Scholar 

  63. Camelliti, P., Borg, T.K., and Kohl, P., Structural and functional characterization of cardiac fibroblasts, Cardiovasc. Res., 2005, vol. 65, no. 1, p. 40.

    Article  CAS  PubMed  Google Scholar 

  64. Feld, Y., Melamed-Frank, M., Kehat, I., et al., Electrophysiological modulation of cardiomyocytic tissue by transfected fibroblasts expressing potassium channels, Circulation, 2002, vol. 105, no. 4, p. 522.

    Article  CAS  PubMed  Google Scholar 

  65. Abramochkin, D.V., Lozinsky, I.T., and Kamkin, A., Influence of mechanical stress on fibroblast–myocyte interactions in mammalian heart, J. Mol. Cell. Cardiol., 2014, vol. 70, p. 27.

    Article  CAS  PubMed  Google Scholar 

  66. Stock, A., Sies, H., and Stahl, W., Enhancement of gap junctional communication and connexin43 expression by thyroid hormones, Biochem. Pharmacol., 1998, vol. 55, no. 4, p. 475.

    Article  CAS  PubMed  Google Scholar 

  67. Ojamaa, K., Signaling mechanisms in thyroid hormone-induced cardiac hypertrophy thyroid hormone & cardiovascular, Vasc. Pharmacol., 2010, vol. 52, nos. 3–4, p. 113.

    Article  CAS  Google Scholar 

  68. Ciulla, M., Paliotti, R., Cortelazzi, D., et al., Effects of thyroid hormones on cardiac structure: a tissue characterization study in patients with thyroid disorders before and after treatment, Thyroid, 2001, vol. 11, no. 7, p. 613.

    Article  CAS  PubMed  Google Scholar 

  69. Mikkonen, L., Lampiaho, K., and Kulonen, E., Effect of thyroid hormones, somatotrophin, insulin and corticosteroids on synthesis of collagen in granulation tissue both in vivo and in vitro, Acta Endocrinol., 1966, vol. 51, no. 1, p. 23.

    Article  CAS  Google Scholar 

  70. Oviedo-Orta, E. and Evans, W.H., Gap junctions and connexin-mediated communication in the immune system, Biochim. Biophys. Acta,Biomembr., 2004, vol. 1662, nos. 1–2, p. 102.

    Article  CAS  Google Scholar 

  71. Frantz, S. and Nahrendorf, M., Cardiac macrophages and their role in ischaemic heart disease, Cardiovasc. Res., 2014, vol. 102, no. 2, p. 240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Valledor, A.F. and Ricote, M., Nuclear receptor signaling in macrophages, Biochem. Pharmacol., 2004, vol. 67, no. 2, p. 201.

    Article  CAS  PubMed  Google Scholar 

  73. Costa Rosa, L.F., Cury, Y., and Curi, R., Hormonal control of macrophage function and glutamine metabolism, Biochem. Cell Biol., 1991, vol. 69, no. 4, p. 309.

    Article  CAS  PubMed  Google Scholar 

  74. Perrotta, C., Buldorini, M., Assi, E., et al., The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation, Am. J. Pathol., 2014, vol. 184, no. 1, p. 230.

    Article  CAS  PubMed  Google Scholar 

  75. Jara, E., Munos-Durango, N., Llanos, C., et al., Modulating the function of the immune system by thyroid hormones and thyrotropin, Immunol. Lett., 2017, vol. 184, p. 76.

    Article  CAS  PubMed  Google Scholar 

  76. Abohashem-Aly, A., Meng, X., Li, J., et al., DITPA, a thyroid hormone analog, reduces infarct size and attenuates the inflammatory response following myocardial ischemia, J. Surg. Res., 2011, vol. 171, no. 2, p. 379.

    Article  CAS  PubMed  Google Scholar 

  77. Baum, M., Dwarakanath, V., Alpern, R., and Moe, O., Effects of thyroid hormone on the neonatal renal cortical Na+/H+ antiporter, Kidney Int., 1998, vol. 53, no. 5, p. 1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alcalde, A., Sarasa, M., Raldula, D., et al., Role of thyroid hormone in regulation of renal phosphate transport in young and aged rats, Endocrinology, 1999, vol. 140, no. 4, p. 1544.

    Article  CAS  PubMed  Google Scholar 

  79. Ibrahim, M.M., RAS inhibition in hypertension, J. Hum. Hypertens., 2006, vol. 20, no. 2, p. 101.

    Article  CAS  PubMed  Google Scholar 

  80. Golde, D., Bersch, N., Chopra, I., and Cline, M., Thyroid hormones stimulate erythropoiesis in vitro, Br. J. Haematol., 1977, vol. 37, no. 2, p. 173.

    Article  CAS  PubMed  Google Scholar 

  81. Syme, H.M., Cardiovascular and renal manifestations of hyperthyroidism, Vet. Clin. North Am.: Large Anim. Pract., 2007, vol. 37, no. 4, p. 723.

    Article  Google Scholar 

  82. Grais, I.M. and Sowers, J.R., Thyroid and the heart, Am. J. Med., 2014, vol. 127, no. 8, p. 691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Clifford, P.S., Local control of blood flow, Adv. Physiol. Educ., 2011, vol. 35, no. 1, p. 5.

    Article  PubMed  Google Scholar 

  84. Solaro, R.J., Mechanisms of the Frank-Starling law of the heart: the beat goes on, Biophys. J., 2007, vol. 93, no. 12, p. 4095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shimizu, I. and Minamino, T., Physiological and pathological cardiac hypertrophy, J. Mol. Cell. Cardiol., 2016, vol. 97, p. 245.

    Article  CAS  PubMed  Google Scholar 

  86. Baevskii, R., Ivanov, G., Chireikin, L., et al., Analysis of heart rate variability using various electrocardiographic systems, Vestn. Aritmol., 2001, no. 24, p. 65.

  87. Chen, J.-L., Chiu, H., Tseng, Y., and Chu, W.-C., Hyperthyroidism is characterized by both increased sympathetic and decreased vagal modulation of heart rate: evidence from spectral analysis of heart rate variability, Clin. Endocrinol., 2006, vol. 64, no. 6, p. 611.

    Article  Google Scholar 

  88. Cairoli, V.J. and Crout, J.R., Role of the autonomic nervous system in the resting tachycardia of experimental hyperthyroidism., J. Pharmacol. Exp. Ther., 1967, vol. 158, no. 1, p. 55.

    CAS  PubMed  Google Scholar 

  89. Cacciatori, V., Bellavere, F., Pezzarossa, A., et al., Power spectral analysis of heart rate in hyperthyroidism, J. Clin. Endocrinol. Metab., 1996, vol. 81, no. 8, p. 2828.

    CAS  PubMed  Google Scholar 

  90. Cacciatori, V., Gemma, M., Bellavere, F., et al., Power spectral analysis of heart rate in hypothyroidism, Eur. J. Endocrinol., 2000, vol. 143, no. 3, p. 327.

    Article  CAS  PubMed  Google Scholar 

  91. Waisberg, M. and Shainberg, A., Characterization of muscarinic cholinergic receptors in intact myocardial cells in vitro, Biochem. Pharmacol., 1992, vol. 43, no. 11, p. 2327.

    Article  CAS  PubMed  Google Scholar 

  92. Yue, L., Xie, J., and Nattel, S., Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation, Cardiovasc. Res., 2011, vol. 89, no. 4, p. 744.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. K. Dzhumaniiazova or O. V. Smirnova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhumaniiazova, I.K., Smirnova, O.V. Effects of Thyroid Hormones on Electrical and Mechanical Parameters of the Heart. Hum Physiol 46, 569–578 (2020). https://doi.org/10.1134/S0362119720050047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720050047

Keywords:

Navigation