Skip to main content
Log in

General Movements as a Factor Reflecting the Normal or Impaired Motor Development in Infants

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Motor activity of infants becomes detectable as early as the first months (9–10 weeks) of fetal development. These movements constantly change during maturation of the fetus, are preserved after birth, and are called general movements. The complexity and variability of movements is a criterion for the normal motor development of infants in the postnatal period. Disturbances in maturation of the nervous system are reflected in abnormal patterns of general movements, and the patterns thus make it possible to diagnose perinatal brain lesions early. This is especially important in the case of preterm infants, who are at higher risk of developing neurological and motor disorders. This review describes the main types of general movements characteristic of normal motor development, the atypical motor patterns that have a predictive value for early prediction of cerebral palsy, and the putative neural substrates that determine the development of normal and abnormal general movements. Various methods are available for assessing general movements, including both qualitative techniques, which are based on visual assessment of motor patterns, and quantitative methods, which employ technologies of automated general movement recognition and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Disselhorst-Klug, C., Heinze, F., Breitbach-Faller, N., et al., Introduction of a method for quantitative evaluation of spontaneous motor activity development with age in infants, Exp. Brain Res., 2012, vol. 218, no. 2, p. 305.

    PubMed  Google Scholar 

  2. Lüchinger, A.B., Hadders-Algra, M., van Kan, C.M., and De Vries, J.I.P., Fetal onset of general movements, Pediatr. Res., 2008, vol. 63, no. 2, p. 191.

    PubMed  Google Scholar 

  3. Kurjak, A., Tikvica, A., Stanojevic, M., et al., The assessment of fetal neurobehavior by three-dimensional and four-dimensional ultrasound, J. Matern.-Fetal Neonatal Med., 2008, vol. 21, no. 10, p. 675.

    PubMed  Google Scholar 

  4. Hadders-Algra, M., Neural substrate and clinical significance of general movements: an update, Dev. Med. Child Neurol., 2018, vol. 60, no. 1, p. 39.

    PubMed  Google Scholar 

  5. Prechtl, H.F., Fargel, J.W., Weinmann, H.M., and Bakker, H.H., Postures, motility and respiration of low-risk pre-term infants, Dev. Med. Child Neurol., 1979, vol. 21, no. 1, p. 3.

    CAS  PubMed  Google Scholar 

  6. Prechtl, H.F. and Hopkins, B., Developmental transformations of spontaneous movements in early infancy, Early Hum. Dev., 1986, vol. 14, no. 3–4, p. 233

    CAS  PubMed  Google Scholar 

  7. Amiel-Tison, C. and Grenier, A., Neurological Assessment during the First Year of Life, Oxford: Oxford Univ. Press, 1986, vol. 5, p. 88.

    Google Scholar 

  8. Hadders-Algra, M., Early human motor development: From variation to the ability to vary and adapt, Neurosci. Biobehav. Rev., 2018, vol. 90, p. 411.

    PubMed  Google Scholar 

  9. Hadders-Algra, M. and Prechtl, H.F.R., Developmental course of general movements in early infancy. I. Descriptive analysis of change in form, Early Hum. Dev., 1992, vol. 28, no. 3, p. 201.

    CAS  PubMed  Google Scholar 

  10. Hopkins, B. and Prechtl, H.F.R., A qualitative approach to the development of movements during early infancy, in Continuity of Neural Functions from Prenatal to Postnatal Life, Clinics in Developmental Medicine no. 94, Prechtl, H.F.R., Ed., Oxford: Blackwell, 1984, p. 179.

  11. Ferrari, F., Frassoldati, R., Berardi, A., et al., The ontogeny of fidgety movements from 4 to 20 weeks post-term age in healthy full-term infants, Early Hum. Dev., 2016, vol. 103, p. 219.

    PubMed  Google Scholar 

  12. Einspieler, C., Abnormal spontaneous movements in infants with repeated sleep apneas, Early Hum. Dev., 1994, vol. 36, no. 1, p. 31.

    CAS  PubMed  Google Scholar 

  13. Meinecke, L., Breitbach-Faller, N., Bartz, C., et al., Movement analysis in the early detection of newborns at risk for developing spasticity due to infantile cerebral palsy, Hum. Mov. Sci., 2006, vol. 25, no. 2, p. 125.

    CAS  PubMed  Google Scholar 

  14. Adde, L., Yang, H., Sæther, R., et al., Characteristics of general movements in preterm infants assessed by computer-based video analysis, Physiother. Theory Pract., 2018, vol. 34, no. 4, p. 286.

    PubMed  Google Scholar 

  15. Zaripova, Yu.R., Sokolov, A.L., and Meigal, A.Yu., Activity of motor units in healthy children in the first year of life, Detskaya Bol’nitsa, 2011, vol. 45, no. 3, p. 23.

    Google Scholar 

  16. Zaripova, Yu.R. and Meigal, A.Yu., Parameters of surface electromyograms in full-term and preterm infants in the neonatal period: the possible contribution of gravity, Hum. Physiol., 2018, vol. 44, no. 4, p. 436.

    Google Scholar 

  17. Hakamada, S., Hayakawa, F., Kuno, K., and Tanaka, R., Development of the monosynaptic reflex pathway in the human spinal cord, Brain Res., 1988, vol. 470, no. 2, p. 239.

    CAS  PubMed  Google Scholar 

  18. Vecchierini-Blineau, M.F. and Guiheneuc, P., Excitability of the monosynaptic reflex pathway in the child from birth to four years of age, J. Neurol. Neurosurg. Psychiatry, 1981, vol. 44, no. 4, p. 309.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Sullivan, M.C., Eyre, J.A., and Miller, S., Radiation of phasic stretch reflex in biceps brachii to muscles of the arm in man and its restriction during development, J. Physiol., 1991, vol. 439, p. 529.

    PubMed  PubMed Central  Google Scholar 

  20. Koh, T. and Eyre, J.A., Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex, Arch. Dis. Child., 1988, vol. 63, no. 11, p. 1347.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hadders-Algra, M., van Eykern, L.A., Klip-Van den Nieuwendijk, A.W., et al., Developmental course of general movements in early infancy. II. EMG correlates, Early Hum. Dev., 1992, vol. 28, no. 3, p. 231.

    CAS  PubMed  Google Scholar 

  22. Thelen, E. and Fisher, D.M., The organization of spontaneous leg movements in newborn infants, J. Mot. Behav., 1983, vol. 15, no. 2, p. 353.

    CAS  PubMed  Google Scholar 

  23. Geertsen, S., Willerslev-Olsen, M., Lorentzen, J., and Nielsen, J.B., Development and aging of human spinal cord circuitries, J. Neurophysiol., 2017, vol. 118, no. 2, p. 1133.

    PubMed  PubMed Central  Google Scholar 

  24. Okado, N., Development of the human cervical spinal cord with reference to synapse formation in the motor nucleus, J. Comp. Neurol., 1980, vol. 191, no. 3, p. 495.

    CAS  PubMed  Google Scholar 

  25. Kostovic, I., Sedmak, G., Vuksic, M., and Judas, M., The relevance of human fetal subplate zone for developmental neuropathology of neuronal migration disorders and cortical dysplasia, CNS Neurosci. Ther., 2015, vol. 21, no. 2, p. 74.

    PubMed  Google Scholar 

  26. Marvın-Padilla, M., The mammalian neocortex new pyramidal neuron: a new conception, Front. Neuroanat., 2014, vol. 7, p. 51.

    Google Scholar 

  27. Kostovic, I. and Judas, M., Transient patterns of cortical lamination during prenatal life: do they have implications for treatment? Neurosci. Biobehav. Rev., 2007, vol. 31, no. 2, p. 1157.

    PubMed  Google Scholar 

  28. van Kan, C.M., De Vries, J.I., Lüchinger, A.B., et al., Ontogeny of fetal movements in the guinea pig, Physiol. Behav., 2009, vol. 98, no. 3, p. 338.

    CAS  PubMed  Google Scholar 

  29. Visser, G.H., Laurini, R.N., De Vries, J.I., et al., Abnormal motor behaviour in anencephalic fetuses, Early Hum. Dev., 1985, vol. 12, no. 2, p. 173.

    CAS  PubMed  Google Scholar 

  30. Andonotopo, W., Kurjak, A., and Kosuta, M.I., Behavior of an anencephalic fetus studied by 4D sonography, J. Matern.-Fetal Neonat. Med., 2005, vol. 17, no. 2, p. 165.

    Google Scholar 

  31. Schopf, V., Kasprian, G., Brugger, P.C., and Prayer, D., Watching the fetal brain at ‘rest,’ Int. J. Dev. Neurosci., 2012, vol. 30, no. 1, p. 11.

    CAS  PubMed  Google Scholar 

  32. Krmpotic-Nemanic, J., Kostovic, I., Bogdanovic, N., et al., Cytoarchitectonic parameters of developmental capacity of the human associative auditory cortex during postnatal life, Acta Oto-Laryngol., 1988, vol. 105, no. 5–6, p. 463.

    CAS  Google Scholar 

  33. Molnár, Z., Clowry, G.J., Šestan, N., et al., New insights into the development of the human cerebral cortex, J. Anat., 2019, vol. 235, no. 3, p. 432.

    PubMed  PubMed Central  Google Scholar 

  34. Leighton, A.H. and Lohmann, C., The wiring of developing sensory circuits—from patterned spontaneous activity to synaptic plasticity mechanisms, Front. Neural. Circ., 2016, vol. 10, p. 71.

    Google Scholar 

  35. Ritterband-Rosenbaum, A., Herskind, A., and Li, X., A critical period of corticomuscular and EMG-EMG coherence detection in healthy infants aged 9–25 weeks, J. Physiol., 2017, vol. 595, no. 8, p. 2699.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Einspieler, C., Bos, A.F., et al., Cerebral palsy: early markers of clinical phenotype and functional outcome, J. Clin. Med., 2019, vol. 8, no. 10, p. 1616.

    PubMed Central  Google Scholar 

  37. Hadders-Algra, M., Early diagnosis and early intervention in cerebral palsy, Front. Neurol., 2014, vol. 5, p. 185.

    PubMed  PubMed Central  Google Scholar 

  38. Ferrari, F., Todeschini, A., and Guidotti, I., General movements in full-term infants with perinatal asphyxia are related to basal ganglia and thalamic lesions, J. Pe-diatr., 2011, vol. 158, no. 8, p. 904.

    Google Scholar 

  39. Ferrari, F., Cioni, G., and Prechtl, H.F., Qualitative changes of general movements in preterm infants with brain lesions, Early Hum. Dev., 1990, vol. 23, no. 3. P.193.

    CAS  PubMed  Google Scholar 

  40. Prechtl, H.F., Einspieler, C., Cioni, G., et al., An early marker for neurological deficits after perinatal brain lesions, Lancet, 1997, vol. 349, no. 9062, p. 1361.

    CAS  PubMed  Google Scholar 

  41. Ferrari, F., Cioni, G., Einspieler, C., et al., Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy, Arch. Pediatr. Adolesc. Med., 2002, vol. 156, no. 5, p. 460.

    PubMed  Google Scholar 

  42. Ferrari, F., Prechtl, H.F., Cioni, G., et al., Posture, spontaneous movements, and behavioral state organisation in infants affected by brain malformations, Early Hum. Dev., 1997, vol. 50, no. 1, p. 87.

    CAS  PubMed  Google Scholar 

  43. Bos, A.F., van Asperen, R.M., de Leeuw, D.M., and Prechtl, H.F.R., The influence of septicaemia on spontaneous motility in preterm infants, Early Hum. Dev., 1997, vol. 50, no. 1, p. 61.

    CAS  PubMed  Google Scholar 

  44. Einspieler, C., Cioni, G., Paolicelli, P.B., et al., The early markers for later dyskinetic cerebral palsy are different from those for spastic cerebral palsy, Neuropediatrics, 2002, vol. 33, no. 2, p. 73.

    CAS  PubMed  Google Scholar 

  45. Karch, D., Kang, K.S., Wochner, K., et al., Kinematic assessment of stereotype in spontaneous movements in infants, Gait Posture, 2012, vol. 36, no. 2, p. 307.

    PubMed  Google Scholar 

  46. Philippi, H., Karch, D., Kang, K.S., et al., Computer-based analysis of general movements reveals stereotypies predicting cerebral palsy, Dev. Med. Child Neurol., 2014, vol. 56, no. 10, p. 960.

    PubMed  Google Scholar 

  47. Adde, L., Helbostad, J.L., Jensenius, A.R., et al., Using computer-based video analysis in the study of fidgety movements, Early Hum. Dev., 2009, vol. 85, no. 9, p. 541.

    PubMed  Google Scholar 

  48. Adde, L., Helbostad, J.L., Jensenius, A.R., et al., Early prediction of cerebral palsy by computer-based video analysis of general movements: a feasibility study, Dev. Med. Child Neurol., 2010, vol. 52, no. 8, p. 773.

    PubMed  Google Scholar 

  49. Spittle, A.J. and Orton, J., Cerebral palsy and developmental coordination disorder in children born preterm, Semin. Fetal Neonatal. Med., 2014, vol. 19, no. 2, p. 84.

    PubMed  Google Scholar 

  50. Fjørtoft, T., Grunewaldt, K.H., Løhaugen, G.C.C., et al., Assessment of motor behavior in high-risk-infants at 3 months predicts motor and cognitive outcomes in 10 years old children, Early Hum. Dev., 2013, vol. 89, no. 10, p. 787.

    PubMed  Google Scholar 

  51. Spittle, A., Orton, J., Anderson, P.J., et al., Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants, Cochrane Database Syst. Rev., 2015, no. 11. https://doi.org/10.1002/14651858.CD005495.pub4

  52. Cioni, G. and Prechtl, H.F., Preterm and early post-term motor behavior in low-risk premature infants, Early Hum. Dev., 1990, vol. 23, no. 5, p. 159.

    CAS  PubMed  Google Scholar 

  53. Snider, L.M., Majnemer, A., Mazer, B., et al., A comparison of the general movements assessment with traditional approaches to newborn and infant assessment: concurrent validity, Early Hum. Dev., 2008, vol. 84, no. 5, p. 297.

    PubMed  Google Scholar 

  54. Ma, L., Yang, B., Meng, L., et al., Effect of early intervention on premature infants’ general movements, Brain Dev., 2015, vol. 37, no. 4, p. 387.

    PubMed  Google Scholar 

  55. Nakajima, Y., Einspieler, C., Marschik, P.B., et al., Does a detailed assessment of poor repertoire general movements help to identify those infants who will develop normally? Early Hum. Dev., 2006, vol. 82, no. 1, p. 53.

    PubMed  Google Scholar 

  56. Einspieler, C. and Prechtl, H.F., Prechtl’s assessment of general movements: a diagnostic tool for the functional assessment of the young nervous system, Ment. Retard. Dev. Disabil. Res. Rev., 2005, vol. 11, no. 1, p. 61.

    PubMed  Google Scholar 

  57. Einspieler, C., Marschik, P.B., Pansy, J., et al., The general movement optimality score: a detailed assessment of general movements during preterm and term age, Dev. Med. Child Neurol., 2015, vol. 58, no. 4, p. 361.

    PubMed  PubMed Central  Google Scholar 

  58. Zorzenon, R.F.M., Takaara, L.K., and Linhares, M.B., General spontaneous movements in preterm infants differentiated by post-conceptional ages, Early Hum. Dev., 2019, vol. 134, p. 1.

    PubMed  Google Scholar 

  59. Spittle, A.J., Walsh, J., Olsen, J.E., et al., Neurobehaviour and neurological development in the first month after birth for infants born between 32–42 weeks’ gestation, Early Hum. Dev., 2016, vol. 96, p. 7.

    PubMed  Google Scholar 

  60. Bultmann, C.S., Orlikowsky, T., Häusler, M., et al., Spontaneous movements in the first four months of life: an accelerometric study in moderate and late preterm infants, Early Hum. Dev., 2019, vol. 130, p. 1.

    PubMed  Google Scholar 

  61. Hadders-Algra, M., General movements in early infancy: what do they tell us about the nervous system? Early Hum. Dev., 1993, vol. 34, no. 1, p. 29.

    CAS  PubMed  Google Scholar 

  62. Miyagishima, S., Asaka, T., Kamatsuka, K., et al., Characteristics of antigravity spontaneous movements in preterm infants up to 3 months of corrected age, Infant Behav. Dev., 2016, vol. 44, p. 227.

    PubMed  Google Scholar 

  63. Bosanquet, M., Copeland, L., Ware, R., and Boyd, R., A systematic review of tests to predict cerebral palsy in young children, Dev. Med. Child Neurol., 2013, vol. 55, no. 5, p. 418.

    PubMed  Google Scholar 

  64. Herskind, A., Greisen, G., and Nielsen, J., Early identification and intervention in cerebral palsy, Dev. Med. Child Neurol., 2014, vol. 57, no. 1, p. 29.

    PubMed  Google Scholar 

  65. Prechtl, H.F., Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction, Early Hum. Dev., 1990, vol. 23, no. 3, p. 151.

    CAS  PubMed  Google Scholar 

  66. Palisano, R.J., Rosenbaum, P., Walter, S., et al., Development and reliability of a system to classify gross motor function in children with cerebral palsy, Dev. Med. Child Neurol., 1997, vol. 39, no. 4, p. 214.

    CAS  PubMed  Google Scholar 

  67. Marcroft, C., Khan, A., Embleton, N.D., et al., Movement recognition technology as a method of assessing spontaneous general movements in high risk infants, Front. Neurol., 2015, vol. 5, p. 284.

    PubMed  PubMed Central  Google Scholar 

  68. Ohgi, S., Morita, S., Kek, K.L., and Mizuike, C., A dynamical systems analysis of spontaneous movements in newborn infants, J. Mot. Behav., 2007, vol. 39, no. 3, p. 203.

    PubMed  Google Scholar 

  69. Kanemaru, N., Watanabe, H., Kihara, H., et al., Jerky spontaneous movements at term age in preterm infants who later developed cerebral palsy, Early Hum. Dev., 2014, vol. 90, no. 8, p. 387.

    PubMed  Google Scholar 

  70. Miyagishima, S., Asaka, T., Kamatsuka, K., et al., Spontaneous movements of preterm infants is associated with outcome of gross motor development, Brain Dev., 2018, vol. 40, no. 8, p. 627.

    PubMed  Google Scholar 

  71. Moeslund, T.B. and Granum, E., A survey of computer vision-based human motion capture, Comput. Vision Image Understanding, 2001, vol. 81, no. 3, p. 231.

    Google Scholar 

  72. Waldmeier, S., Grunt, S., Delgado-Eckert, E., et al., Correlation properties of spontaneous motor activity in healthy infants: a new computer-assisted method to evaluate neurological maturation, Exp. Brain Res., 2013, vol. 227, no. 4, p. 433.

    PubMed  Google Scholar 

  73. Rahmati, H., Aamo, O.M., Stavdahl, Ø., et al., Video-based early cerebral palsy prediction using motion segmentation, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2014, vol. 2014, p. 3779.

    PubMed  Google Scholar 

  74. Stahl, A., Schellewald, C., Stavdahl, Ø., et al., An optical flow based method to predict infantile cerebral palsy, IEEE Trans. Neural. Syst. Rehabil. Eng., 2012, vol. 20, no. 4, p. 605.

    PubMed  Google Scholar 

  75. Støen, R., Songstad, N.T., Silberg, I.E., et al., Computer-based video analysis identifies infants with absence of fidgety movements, Pediatr. Res., 2017, vol. 82, no. 4, p. 740.

    Google Scholar 

  76. Orlandi, S., Raghuram, K., Smith, C.R., et al., Detection of atypical and typical infant movements using computer-based video analysis, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2018, vol. 2018, p. 3598.

    PubMed  Google Scholar 

  77. Ohgi, S., Morita, S., Loo, K.K., and Mizuike, C., Time series analysis of spontaneous upper-extremity movements of premature infants with brain injuries, Phys. Ther., 2008, vol. 88, no. 9, p. 1022.

    PubMed  PubMed Central  Google Scholar 

  78. Mingming, F., Dana, G., Dan, M.C., and Donald, J.P., Augmenting gesture recognition with Erlang-Cox models to identify neurological disorders in premature babies, Proc. Int. Joint Conf. on Perv. and Ubi-Comp. Pittsburgh, Pennsylvania, September 5–8,2012, Pittsburgh, 2012, p. 411. https://doi.org/10.1145/2370216.2370278

  79. Heinze, F., Hesels, K., Breitbach-Faller, N., et al., Movement analysis by accelerometry of newborns and infants for the early detection of movement disorders due to infantile cerebral palsy, Med. Biol. Eng. Comput., 2010, vol. 48, no. 8, p. 765.

    PubMed  Google Scholar 

  80. Cerebral Palsy in Infancy: Targeted Activity to Optimize Early Growth and Development, Shepherd, R.B., Ed., London: Churchill Livingstone Elsevier, 2014.

    Google Scholar 

  81. Morgan, C., Darrah, J., Gordon, A.M., et al., Effectiveness of motor interventions in infants with cerebral palsy: a systematic review, Dev. Med. Child Neurol., 2016, vol. 58, no. 9, p. 900.

    PubMed  Google Scholar 

  82. Eyre, J., Corticospinal tract development and activity dependent plasticity, in Cerebral Palsy in Infancy: Targeted Activity to Optimize Early Growth and Development, Shepherd, R.B., Ed., London: Churchill Livingstone Elsevier, 2014, p. 53.

    Google Scholar 

  83. Herskind, A., Greisen, G., and Nielsen, J.B., Early identification and intervention in cerebral palsy, Dev. Med. Child Neurol., 2015, vol. 57, no. 1, p. 29.

    PubMed  Google Scholar 

  84. Hadders-Algra, M., Early diagnosis and early intervention in cerebral palsy, Front. Neurol., 2014, vol. 24, no. 5, p. 185.

    Google Scholar 

  85. Hutchon, B., Gibbs, D., Harniess, P., et al., Early intervention programs for infants at high risk of atypical neurodevelopmental outcome, Dev. Med. Child Neurol., 2019, vol. 61, no. 12, p. 1362.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-015-00187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Solopova.

Ethics declarations

Conflict of interests. The authors declare that they have no real or potential conflict of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solopova, I.A., Selionov, V.A., Dolinskaya, I.Y. et al. General Movements as a Factor Reflecting the Normal or Impaired Motor Development in Infants. Hum Physiol 46, 432–442 (2020). https://doi.org/10.1134/S036211972004012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972004012X

Keywords:

Navigation