Skip to main content
Log in

EPAC Proteins and Their Role in the Physiological and Pathological Processes in the Cardiovascular System. Part II. The role of EPAC Proteins in the Physiology and Pathology of the Heart

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The second part of the review presents modern ideas about vision of the role of Epac proteins in the regulation of inotropic and rhythmic functions of the heart, intercellular coupling of cardiomyocytes and their apoptosis. The contribution of Epac proteins to the development of hypertrophy, fibrosis, and myocardial remodeling, as well as their role in the genesis of acute ischemic damage to the heart muscle and cardiac arrhythmias, is examined in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Ulucan, C., Wang, X., Baljinnyam, E., et al., Developmental changes in gene expression of Epac and its upregulation in myocardial hypertrophy, Am. J. Physiol.: Heart Circ. Physiol., 2007, vol. 293, no. 3, p. H1662.

    CAS  Google Scholar 

  2. Pereira, L., Rehmann, H., Lao, D.H., et al., Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 13, p. 3991.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pereira, L., Métrich, M., Fernández-Velasco, M., et al., cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes, J. Physiol., 2007, vol. 583, no. 2, p. 685.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Oestreich, E.A., Wang, H., Malik, S., et al., Epac-mediated activation of phospholipase Cϵ plays a critical role in β-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes, J. Biol. Chem., 2007, vol. 282, no. 8, p. 5488.

    CAS  PubMed  Google Scholar 

  5. Oestreich, E.A., Malik, S., Goonasekera, S.A., et al., Epac and phospholipase Cϵ regulate Ca2+ release in the heart by activation of protein kinase Cϵ and calcium-calmodulin kinase II, J. Biol. Chem., 2009, vol. 284, no. 3, p. 1514.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cazorla, O., Lucas, A., Poirier, F., et al., cAMP binding protein Epac regulates cardiac myofilament function, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 33, p. 14144.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pereira, L., Ruiz-Hurtado, G., Morel, E., et al., Epac enhances excitation-transcription coupling in cardiac myocytes, J. Mol. Cell. Cardiol., 2012, vol. 52, no. 1, p. 283.

    CAS  PubMed  Google Scholar 

  8. Okumura, S., Fujita, T., Cai, W., et al., Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses, J. Clin. Invest., 2014, vol. 124, no. 6, p. 2785.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruiz-Hurtado, G., Morel, E., Domínguez-Rodríguez, A., et al., Epac in cardiac calcium signaling, J. Mol. Cell. Cardiol., 2013, vol. 58, p. 162.

    CAS  PubMed  Google Scholar 

  10. Fujita, T., Umemura, M., Yokoyama, U., et al., The role of Epac in the heart, Cell. Mol. Life Sci., 2017, vol. 74, no. 4, p. 591.

    CAS  PubMed  Google Scholar 

  11. Darrow, B.J., Fast, V.G., Kléber, A.G., et al., Functional and structural assessment of intercellular communication. Increased conduction velocity and enhanced connexin expression in dibutyryl cAMP-treated cultured cardiac myocytes, Circ. Res., 1996, vol. 79, no. 2, p. 174.

    CAS  PubMed  Google Scholar 

  12. Matsuda, T., Fujio, Y., Nariai, T., et al., N-cadherin signals through Rac1 determine the localization of connexin 43 in cardiac myocytes, J. Mol. Cell. Cardiol., 2006, vol. 40, no. 4, p. 495.

    CAS  PubMed  Google Scholar 

  13. Salameh, A., Frenzel, C., Boldt, A., et al., Subchronic α- and β-adrenergic regulation of cardiac gap junction protein expression, FASEB J., 2006, vol. 20, no. 2, p. 365.

    CAS  PubMed  Google Scholar 

  14. Somekawa, S., Fukuhara, S., Nakaoka, Y., et al., Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes, Circ. Res., 2005, vol. 97, no. 7, p. 655.

    CAS  PubMed  Google Scholar 

  15. Lee, T.M., Lin, S.Z., and Chang, N.C., Both PKA and Epac pathways mediate N-acetylcysteine-induced connexin43 preservation in rats with myocardial infarction, PLoS One, 2013, vol. 8, no. 8, p. e71878.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Duquesnes, N., Derangeon, M., Métrich, M., et al., Epac stimulation induces rapid increases in connexin43 phosphorylation and function without preconditioning effect, Pflugers Arch., 2010, vol. 460, no. 4, p. 731.

    CAS  PubMed  Google Scholar 

  17. Communal, C., Singh, K., Pimentel, D.R., and Colucci, W.S., Norepinephrine stimulates apoptosis in adult rat ventricular activation of the beta-adrenergic pathway, Circulation, 1998, vol. 98, no. 13, p. 1329.

    CAS  PubMed  Google Scholar 

  18. Fujita, T. and Ishikawa, Y., Apoptosis in heart failure. The role of the β-adrenergic receptor-mediated signaling pathway and p53-mediated signaling pathway in the apoptosis of cardiomyocytes, Circ. J., 2011, vol. 75, no. 8, p. 1811.

    CAS  PubMed  Google Scholar 

  19. Kwak, H.J., Park, K.M., Choi, H.E., et al., PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways, Cell. Signaling, 2008, vol. 20, no. 5, p. 803.

    Google Scholar 

  20. Wu, X.M., Ou, Q.Y., Zhao, W., et al., The GLP-1 analogue liraglutide protects cardiomyocytes from high glucose-induced apoptosis by activating the Epac-1/Akt pathway, Exp. Clin. Endocrinol. Diabetes, 2014, vol. 122, no. 10, p. 608.

    CAS  PubMed  Google Scholar 

  21. Mangmool, S., Hemplueksa, P., Parichatikanond, W., and Chattipakorn, N., Epac is required for GLP-1R-mediated inhibition of oxidative stress and apoptosis in cardiomyocytes, Mol. Endocrinol., 2015, vol. 29, no. 4, p. 583.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Aoyama, M., Kawase, H., Bando, Y.K., et al., Dipeptidyl peptidase 4 inhibition alleviates shortage of circulating glucagon-like peptide-1 in heart failure and mitigates myocardial remodeling and apoptosis via the exchange protein directly activated by cyclic AMP 1/Ras-related protein 1 axis, Circ.: Heart Failure, 2016, vol. 9, no. 1, p. e002081.

    CAS  PubMed  Google Scholar 

  23. Wang, Z., Liu, D., Varin, A., et al., A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death, Cell. Death Dis., 2016, vol. 7. e2198.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Litvin, T.N., Kamenetsky, M., Zarifyan, A., et al., Kinetic properties of “soluble” adenylyl cyclase. Synergism between calcium and bicarbonate, J. Biol. Chem., 2003, vol. 278, no. 18, p. 15922.

    CAS  PubMed  Google Scholar 

  25. Acin-Perez, R., Salazar, E., Kamenetsky, M., et al., Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation, Cell. Metab., 2009, vol. 9, no. 3, p. 265.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar, S., Kostin, S., Flacke, J.P., et al., Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells, J. Biol. Chem., 2009, vol. 284, no. 22, p. 14760.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Calderón-Sánchez, E., Díaz, I., Ordóñez, A., and Smani, T., Urocortin-1 mediated cardioprotection involves XIAP and CD40-ligand recovery: role of EPAC2 and ERK1/2, PLoS One, 2016, vol. 11, no. 2. e0147375

    PubMed  PubMed Central  Google Scholar 

  28. Kang, J.H., Lee, H.S., Park, D., et al., Context-independent essential regulatory interactions for apoptosis and hypertrophy in the cardiac signaling network, Sci. Rep., 2017, vol. 7, no. 1, p. 34.

    PubMed  PubMed Central  Google Scholar 

  29. Engelhardt, S., Hein, L., Wiesmann, F., and Lohse, M.J., Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 12, p. 7059.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Krum, H., Sympathetic activation and the role of beta-blockers in chronic heart failure, Aust. N. Z. J. Med., 1999, vol. 29, no. 3, p. 418.

    CAS  PubMed  Google Scholar 

  31. Morisco, C., Zebrowski, D., Condorelli, G., et al., The Akt-glycogen synthase kinase 3β pathway regulates transcription of atrial natriuretic factor induced by β-adrenergic receptor stimulation in cardiac myocytes, J. Biol. Chem., 2000, vol. 275, no. 19, p. 14466.

    CAS  PubMed  Google Scholar 

  32. Zheng, M., Han, Q.D., and Xiao, R.P., Distinct beta-adrenergic receptor subtype signaling in the heart and their pathophysiological relevance, Acta Phisiol. Sin., 2004, vol. 56, no. 1, p. 1.

    CAS  Google Scholar 

  33. Colomer, J.M., Mao, L., Rockman, H.A., and Means, A.R., Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo, Mol. Endocrinol., 2003, vol. 17, no. 2, p. 183.

    CAS  PubMed  Google Scholar 

  34. Morel, E., Marcantoni, A., Gastineau, M., et al., cAMP-binding protein Epac induces cardiomyocyte hypertrophy, Circ. Res., 2005, vol. 97, no. 12, p. 1296.

    CAS  PubMed  Google Scholar 

  35. Métrich, M., Lucas, A., Gastineau, M., et al., Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy, Circ. Res., 2008, vol. 102, no. 8, p. 959.

    PubMed  Google Scholar 

  36. Monceau, V., Llach, A., Azria, D., et al., Epac contributes to cardiac hypertrophy and amyloidosis induced by radiotherapy but not fibrosis, Radiother. Oncol., 2014, vol. 111, no. 1, p. 63.

    PubMed  Google Scholar 

  37. Métrich, M., Laurent, A.C., Breckler, M., et al., Epac activation induces histone deacetylase nuclear export via a Ras-dependent signaling pathway, Cell Signaling, 2010, vol. 22, no. 10, p. 1459.

    Google Scholar 

  38. Lezoualc’h, F., Métrich, M., Hmitou, I., et al., Small GTP-binding proteins and their regulators in cardiac hypertrophy, J. Mol. Cell. Cardiol., 2008, vol. 44, no. 4, p. 623.

    PubMed  Google Scholar 

  39. Li, L., Cai, H., Liu, H., and Guo, T., β-Adrenergic stimulation activates protein kinase Cε and induces extracellular signal-regulated kinase phosphorylation and cardiomyocyte hypertrophy, Mol. Med. Rep., 2015, vol. 11, no. 6, p. 4373.

    CAS  PubMed  Google Scholar 

  40. Métrich, M., Morel, E., Berthouze, M., et al., Functional characterization of the cAMP-binding proteins Epac in cardiac myocytes, Pharmacol. Rep., 2009, vol. 61, no. 1, p. 146.

    PubMed  Google Scholar 

  41. Laudette, M., Coluccia, A., Sainte-Marie, Y., et al., Identification pharmacological inhibitor Epac1 that protects heart against acute and chronic modelscardiac stress, Cardiovasc. Res., 2019, vol. 115, no. 12, p. 1766.

    CAS  PubMed  Google Scholar 

  42. Berthouze-Duquesnes, M., Lucas, A., Saulière, A., et al., Specific interactions between Epac1, β-arrestin2 and PDE4D5 regulatereceptor differential on cardiac hypertrophic signaling, Cell Signaling, 2013, vol. 25, no. 4, p. 970.

    CAS  Google Scholar 

  43. Jin, H., Fujita, T., Jin, M., et al., Cardiac overexpression of Epac1 in transgenic mice rescues lipopolysaccharide-induced cardiac dysfunction and inhibits Jak-STAT pathway, J. Mol. Cell. Cardiol., 2017, vol. 108, p. 170.

    CAS  PubMed  Google Scholar 

  44. Eghbali, M., Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation, Basic Res. Cardiol., 1992, vol. 87, suppl. 2, p. 183.

    CAS  PubMed  Google Scholar 

  45. Swaney, J.S., Roth, D.M., Olson, E.R., et al., Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 2, p. 437.

    CAS  PubMed  Google Scholar 

  46. Yokoyama, U., Patel, H.H., Lai, N.C., et al., The cyclic AMP effector Epac integrates pro- and anti-fibrotic signals, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 17, p. 6386.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Insel, P.A., Murray, F., Yokoyama, U., et al., cAMP and Epac in the regulation of tissue fibrosis, Br. J. Pharmacol., 2012, vol. 166, no. 2, p. 447.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller, C.L., Cai, Y., Oikawa, M., et al., Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart, Basic Res. Cardiol., 2011, vol. 106, no. 6, p. 1023.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, C., Du, J., Feng, W., et al., β-Adrenergic receptors stimulate interleukin-6 production through Epac-dependent activation of PKCδ/p38 MAPK signalling in neonatal mouse cardiac fibroblasts, Br. J. Pharmacol., 2012, vol. 166, no. 2, p. 676.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Che, X., Wang, X., Zhang, J., et al., Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation, Am. J. Transl. Res., 2016, vol. 8, no. 8, p. 3319.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lorenzen, J.M., Schauerte, C., Hübner, A., et al., Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis, Eur. Heart J., 2015, vol. 36, no. 32, p. 2184.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pollard, C.M., Desimine, V.L., Wertz, S.L., et al., Deletion of osteopontin enhances β2-adrenergic receptor-dependent anti-fibrotic signaling in cardiomyocytes, Int. J. Mol. Sci., 2019, vol. 20, no. 6, p. E1396.

    PubMed  Google Scholar 

  53. Surinkaew, S., Aflaki, M., Takawale, A., et al., Exchange protein activated by cyclic-adenosine monophosphate (Epac) regulates atrial fibroblast function and controls cardiac remodeling, Cardiovasc. Res., 2019, vol. 115, no. 1, p. 94.

    CAS  PubMed  Google Scholar 

  54. Fazal, L., Laudette, M., Paula-Gomes, S., et al., Multifunctional mitochondrial Epac1 controls myocardial cell death, Circ. Res., 2017, vol. 120, no. 4, p. 645.

    CAS  PubMed  Google Scholar 

  55. Hothi, S.S., Gurung, I.S., Heathcote, J.C., et al., Epac activation, altered calcium homeostasis and ventricular arrhythmogenesis in the murine heart, Pflugers Arch., 2008, vol. 457, no. 2, p. 253.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pereira, L., Cheng, H., Lao, D.H., et al., Epac2 mediates cardiac β1-adrenergic-dependent sarcoplasmic reticulum Ca2+ leak and arrhythmia, Circulation, 2013, vol. 127, no. 8, p. 913.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Neef, S., Heijman, J., Otte, K., et al., Chronic loss of inhibitor-1 diminishes cardiac RyR2 phosphorylation despite exaggerated CaMKII activity, Naunyn-Schmiedeberg’s Arch. Pharmacol., 2017, vol. 390, no. 8, p. 857.

    CAS  Google Scholar 

  58. Li, M., Hothi, S.S., Salvage, S.C., et al., Arrhythmic effects of Epac-mediated ryanodine receptor activation in Langendorff-perfused murine hearts are associated with reduced conduction velocity, Clin. Exp. Pharmacol. Physiol., 2017, vol. 44, no. 6, p. 686.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lezcano, N., Mariángelo, J.I.E., Vittone, L., et al., Early effects of Epac depend on the fine-tuning of the sarcoplasmic reticulum Ca2+ handling in cardiomyocytes, J. Mol. Cell. Cardiol., 2018, vol. 114, p. 1.

    CAS  PubMed  Google Scholar 

  60. Bobin, P., Varin, A., Lefebvre, F., et al., Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+ waves induced by cAMP-phosphodiesterase inhibitors, Cardiovasc. Res., 2016, vol. 110, no. 1, p. 151.

    CAS  PubMed  Google Scholar 

  61. Pereira, L., Bare, D.J., Galice, S., et al., β-Adrenergic induced SR Ca2+ mediated Epac-NOS, J. Mol. Cell. Cardiol., 2017, vol. 108, p. 8.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Curran, J., Tang, L., Roof, S.R., et al., Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation, PLoS One, 2014, vol. 9, no. 2, p. e87495.

    PubMed  PubMed Central  Google Scholar 

  63. Maltsev, V.A., Sabbah, H.N., Higgins, R.S., et al., Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes, Circulation, 1998, vol. 98, no. 23, p. 2545.

    CAS  PubMed  Google Scholar 

  64. Belardinelli, L., Giles, W.R., Rajamani, S., et al., Cardiac late Na+ current: proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress, Heart Rhythm, 2015, vol. 12, no. 2, p. 440.

    PubMed  Google Scholar 

  65. Dybkova, N., Wagner, S., Backs, J., et al., Tubulin polymerization disrupts cardiac β-adrenergic regulation of late INa, Cardiovasc. Res., 2014, vol. 103, no. 1, p. 168.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hegyi, B., Bányász, T., Izu, L.T., et al., β-Adrenergic regulation of late Na+ current during action potential is mediated by both PKA and CaMKII, J. Mol. Cell. Cardiol., 2018, vol. 123, p. 168.

    CAS  PubMed  Google Scholar 

  67. Valli, H., Ahmad, S., Sriharan, S., et al., Epac-induced ryanodine receptor type 2 inhibits sodium currents in atrial and ventricular cardiomyocytes, Clin. Exp. Pharmacol. Physiol., 2018, vol. 45, no. 3, p. 278.

    CAS  PubMed  Google Scholar 

  68. Zhang, M.X., Zheng, J.K., Wang, W.W., et al., Exchange-protein activated by cAMP (EPAC) regulates L-type calcium channel in atrial fibrillation of heart failure model, Eur. Rev. Med. Pharmacol. Sci., 2019, vol. 23, no. 5, p. 2200.

    PubMed  Google Scholar 

  69. Doleschal, B., Primessnig, U., Wölkart, G., et al., TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1, Cardiovasc. Res., 2015, vol. 106, no. 1, p. 163.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tiapko, O. and Groschner, K., TRPC3 as a target of novel therapeutic interventions, Cells, 2018, vol. 7, no. 7, p. E83.

    PubMed  Google Scholar 

  71. Domínguez-Rodríguez, A., Ruiz-Hurtado, G., Sabourin, J., et al., Proarrhythmic effect-sustained activation on TRPC3/4 in rat ventricular cardiomyocytes, J. Mol. Cell. Cardiol., 2015, vol. 87, p. 74.

    PubMed  Google Scholar 

  72. Brette, F., Blandin, E., Simard, C., et al., Epac activator critically regulates action potential duration by decreasing potassium current in rat adult ventricle, J. Mol. Cell. Cardiol., 2013, vol. 57, p. 96.

    CAS  PubMed  Google Scholar 

  73. Laudette, M., Zuo, H., Lezoualc’h, F., and Schmidt, M., Epac function and cAMP scaffolds in the heart and lung, J. Cardiovasc. Dev. Dis., 2018, vol. 5, no. 1, p. E9.

    PubMed  Google Scholar 

  74. Aflaki, M., Qi, X.Y., Xiao, L., et al., Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained β-adrenergic activation in guinea pig hearts, Circ. Res., 2014, vol. 114, no. 6, p. 993.

    CAS  PubMed  Google Scholar 

  75. Yang, Z., Kirton, H.M., Al-Owais, M., et al., Epac2-Rap1 signaling regulates species and susceptibility to cardiac arrhythmias, Antioxid. Redox Signaling, 2017, vol. 27, no. 3, p. 117.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are deeply grateful to Corresponding Member of the RAS Yu.V. Vakhitova (Zakusov Research Institute of Pharmacology, Moscow) for her advisory assistance in the work on the literature review and V.V. Barchukov (Zakusov Research Institute of Pharmacology, Moscow) for his help in presenting the results of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kryzhanovskii.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryzhanovskii, S.A., Nikiforova, T.D., Vititnova, M.B. et al. EPAC Proteins and Their Role in the Physiological and Pathological Processes in the Cardiovascular System. Part II. The role of EPAC Proteins in the Physiology and Pathology of the Heart. Hum Physiol 46, 443–464 (2020). https://doi.org/10.1134/S0362119720040076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720040076

Keywords:

Navigation