Skip to main content
Log in

Brain Regulatory Functions in Adolescents with Signs of Deviant Behavior. An Interdisciplinary Analysis

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

We conducted a comparative interdisciplinary study of the brain regulatory functions in adolescents aged 13–16 years with (n = 82) and without (n = 125) signs of deviant behavior. The first group consisted of adolescents with behavioral and emotional problems at school and in interacting with their parents, as reported by school psychologists. We used standardized questionnaires to assess individual tendencies towards deviant behavior. The effectiveness of executive functions was assessed by neuropsychological examinations. The functioning of the brain regulatory systems was analyzed using the visual structural analysis of EEG traces. According to the results of EEG analysis, signs of deviant behavior correlated with suboptimal functioning of various parts of the brain regulatory systems (RS). In adolescents with signs of deviant behavior, the EEG patterns of limbic origin were most prominent and were observed significantly more often than in the control group. The same group differences were found for the EEG patterns of fronto-thalamic and fronto-basal origin as well as for EEG changes in the lateral frontal areas of the left hemisphere. Adolescents with the EEG signs of suboptimal functioning of different parts of RS demonstrated both common and specific tendencies towards deviant behavior and the deficiency of various components of voluntary control. At the same time, the same behavioral problems were accompanied by the EEG patterns of different origins. The obtained results suggest that suboptimal RS functioning is an important neurophysiological mechanism, which underlies behavioral deviations in adolescents. They also indicate the heterogeneous nature of deviant behavior and the need for individual assessment of the brain regulatory functions for the diagnostics and correction of behavioral deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Fiziologiya razvitiya rebenka. Rukovodstvo po vozrastnoi fiziologii (Physiology of Child Development: Manual for Developmental Physiology), Bezrukikh, M.M. and Farber, D.A., Eds., Moscow: Mosk. Psikhol.-Sots. Inst., 2010.

    Google Scholar 

  2. Del’dshtein, D.I., Trudnyi podrostok: nekotorye psikhologicheskie voprosy formiroavaniya lichnosti detei podrostkovogo vozrasta (Difficult Adolescent: Some Psychological Concpets of Personality Formation in Adolescents), Moscow: Mosk. Psikhol.-Sots. Inst., 2008.

  3. Zmanovskaya, E.V., Deviantologiya (psikhologiya otklonyayushchegosya povedeniya) (Deviantology: Psychology of Deviant Behavior), Moscow: Akademiya, 2003.

  4. Casey, B.J., Beyond simple models of self-control to circuit-based accounts of adolescent behavior, Annu. Rev. Psychol., 2015, vol. 66, p. 295.

    CAS  PubMed  Google Scholar 

  5. Klingberg, T., Forssberg, H., and Westerberg, H., Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood, J. Cognit. Neurosci., 2002, vol. 14, no. 1, p. 1.

    Google Scholar 

  6. Blakemore, S.J. and Choudhury, S., Development of the adolescent brain: implications for executive function and social cognition, J. Child Psychol. Psychiatry, 2006, vol. 47, nos. 3–4, p. 296.

    PubMed  Google Scholar 

  7. Arain, M., Haque, M., Johal, L., et al., Maturation of the adolescent brain, Neuropsychol. Dis. Treat., 2013, vol. 9, p. 449.

    Google Scholar 

  8. Karns, C.M., Isbell, E., Giuliano, R.J., and Neville, H.J., Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories, Dev. Cognit. Neurosci., 2015, vol. 13, p. 53.

    Google Scholar 

  9. Vinette, S.A. and Bray, S., Variation in functional connectivity along anterior-to-posterior intraparietal sulcus, and relationship with age across late childhood and adolescence, Dev. Cognit. Neurosci., 2015, vol. 13, p. 32.

    Google Scholar 

  10. Cauffman, E., Steinberg, L., and Piquero, A.R., Psychological, neuropsychological and physiological correlates of serious antisocial behavior in adolescence: the role of self-control, Criminology, 2005, vol. 43, no. 1, p. 133.

    Google Scholar 

  11. Spear, L.P., The adolescent brain and age-related behavioral manifestations, Neurosci. Biobehav. Rev., 2000, vol. 24, no. 4, p. 417.

    CAS  PubMed  Google Scholar 

  12. Steinberg, L., A dual systems model of adolescent risk-taking, Dev. Psychobiol., 2010, vol. 52, no. 3, p. 216.

    PubMed  Google Scholar 

  13. Crone, E. and Dahl, R., Understanding adolescence as a period of social-affective engagement and goal flexibility, Nat. Rev. Neurosci., 2012, vol. 13, p. 636.

    CAS  PubMed  Google Scholar 

  14. Crone, E.A. and Konijn, E.A., Media use and brain development during adolescence, Nat. Commun., 2018, vol. 9, no. 1, p. 588.

    PubMed  PubMed Central  Google Scholar 

  15. Steinbeis, N. and Crone, E.A., The link between cognitive control and decision-making across child and adolescent development, Curr. Opin. Behav. Sci., 2016, vol. 10, p. 28.

    Google Scholar 

  16. Klapwijk, E.T., van den Bos, W., and Güroğlu, B., Neural mechanisms of criminal decision making in adolescence: the roles of executive functioning and empathy, in The Oxford Handbook of Offender Decision Making, Bernasco, W., van Gelder, J.-L., and Elffers, H., Eds., Oxford: Oxford Univ. Press, 2017, p. 246.

    Google Scholar 

  17. Blakemore, S.J. and Robbins, T.W., Decision-making in the adolescent brain, Nat. Neurosci., 2012, vol. 15, no. 9, p. 1184.

    CAS  PubMed  Google Scholar 

  18. Moreira, F.A., Jupp, B., Belin, D., and Dalley, J.W., Endocannabinoids and striatal function: implications for addiction-related behaviors, Behav. Pharmacol., 2015, vol. 26, nos. 1–2, p. 59.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kornilova, T.A., Grigorenko, E.L., and Smirnov, S.D., Podrostki gruppy riska (Adolescences of Risk Group), St. Petersburg: Piter, 2005.

  20. Mendelevich, V.D., Psikhologiya deviantnogo povedeniya: uchebnoe posobie dlya vuzov (Psychology of Deviant Behavior: Manual for Higher Education Institutions), St. Petersburg: Rech’, 2005.

  21. van Leijenhorst, L., Zanolie, K., van Meel, C.S., et al., What motivates the adolescent? Brain regions mediating reward sensitivity across adolescence, Cereb. Cortex, 2010, vol. 20, no. 1, p. 61.

    PubMed  Google Scholar 

  22. Cservenka, A., Herting, M.M., Seghete, K.L.M., et al., High and low sensation seeking adolescents show distinct patterns of brain activity during reward processing, NeuroImage, 2013, vol. 66, p. 184.

    PubMed  Google Scholar 

  23. Casey, B.J. and Jones, R.M., Neurobiology of the adolescent brain and behavior: implications for substance use disorders, J. Am. Acad. Child. Adolesc. Psychiatry, 2010, vol. 49, no. 12, p. 1189.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Oxford Handbook of Developmental Behavioral Neuroscience, Blumberg M.S., Freeman, J.H., and Robinson, S.R., Eds., New York: Oxford Univ. Press, 2010.

    Google Scholar 

  25. Montague, D., Weickert, C.S., Tomaskovic-Crook, E., et al., Oestrogen receptor alpha localisation in the prefrontal cortex of three mammalian species, J. Neuroendocrinol., 2008, vol. 20, no. 7, p. 893.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sinclair, D., Purves-Tyson, T.D., Allen, K.M., and Weickert, C.S., Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain, Psychopharmacology, 2014, vol. 231, no. 8, p. 1581.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sisk, C.L. and Zehr, J.L., Pubertal hormones organize the adolescent brain and behavior, Front. Neuroendocrinol., 2005, vol. 26, nos. 3–4, p. 163.

    CAS  PubMed  Google Scholar 

  28. Raznahan, A., Lee, Y., Stidd, R., et al., Longitudinally mapping the influence of sex and androgen signaling on the dynamics of human cortical maturation in adolescence, Proc. Nat. Acad. Sci. U.S.A., 2010, vol. 107, no. 39, p. 16 988.

    Google Scholar 

  29. Koolschijn, P.C.M.P., Peper, J.S., and Crone, E.A., The influence of sex steroids on structural brain maturation in adolescence, PLoS One, 2014, vol. 9, no. 1, p. e83 929.

    Google Scholar 

  30. Cooke, B.M. and Woolley, C.S., Gonadal hormone modulation of dendrites in the mammalian CNS, J. Neurobiol., 2005, vol. 64, no. 1, p. 34.

    CAS  PubMed  Google Scholar 

  31. Vigil, P., Del Río, J.P., Carrera, B., et al., Influence of sex steroid hormones on the adolescent brain and behavior: an update, Linacre Q., 2016, vol. 83, no. 3, p. 308.

    PubMed  PubMed Central  Google Scholar 

  32. Peper, J.S., Hulshoff Pol, H.E., Crone, E.A., and van Honk, J., Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies, Neuroscience, 2011, vol. 191, p. 28.

    CAS  PubMed  Google Scholar 

  33. Spear, L.P., The Behavioral Neuroscience of Adolescence, New York: W.W. Norton, 2010.

    Google Scholar 

  34. Denson, T.F., Mehta, P.H., and Ho Tan, D., Endogenous testosterone and cortisol jointly influence reactive aggression in women, Psychoneuroendocrinology, 2013, vol. 38, no. 3, p. 416.

    CAS  PubMed  Google Scholar 

  35. Machinskaya, R.I., The brain executive systems, Zh. Vyssh. Nerv. Deyat.im.I.P. Pavlova, 2015, vol. 65, no. 1, p. 33.

    CAS  Google Scholar 

  36. Tsekhmistrenko, T.A., Vasil’eva, V.A., Obukhov, D.K., and Shumeiko, N.S., Stroenie i razvitie kory bol’shogo mozga (The Structure and Development of Great Brain Cortex), Moscow: Sputnik, 2019.

  37. Tamnes, C.K., Walhovd, K.B., Grydeland, H., et al., Longitudinal working memory development is related to structural maturation of frontal and parietal cortices, J. Cognit. Neurosci., 2013, vol. 25, no. 10, p. 1611.

    Google Scholar 

  38. Ochsner, K.N., Ray, R.R., Hughes, B., et al., Bottom-up and top-down processes in emotion generation: common and distinct neural mechanisms, Psychol. Sci., 2009, vol. 20, no. 11, p. 1322.

    PubMed  PubMed Central  Google Scholar 

  39. Malhi, G.S., Tanious, M., Fritz, K., et al., Differential engagement of the fronto-limbic network during emotion processing distinguishes bipolar and borderline personality disorder, Mol. Psychiatry, 2013, vol. 18, no. 2, p. 1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Carl, H., Walsh, E., Eisenlohr-Moul, T., et al., Sustained anterior cingulate cortex activation during reward processing predicts response to psychotherapy in major depressive disorder, J. Affective Disord., 2016, vol. 203, p. 204.

    Google Scholar 

  41. Sundram, F., Deeley, Q., Sarkar, S., et al., White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder, Cortex, 2012, vol. 48, no. 2, p. 216.

    PubMed  Google Scholar 

  42. Bjork, J.M., Knutson, B., Fong, G.W., et al., Incentive-elicited brain activation in adolescents: similarities and differences from young adults, J. Neurosci., 2004, vol. 24, no. 8, p. 1793.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Galvan, A., Hare, T.A., Parra, C.E., et al., Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents, J. Neurosci., 2006, vol. 26, no. 25, p. 6885.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ernst, M., Pine, D.S., and Hardin, M., Triadic model of the neurobiology of motivated behavior in adolescence, Psychol. Med., 2006, vol. 36, no. 3, p. 299.

    PubMed  PubMed Central  Google Scholar 

  45. van Leijenhorst, L., Zanolie, K., van Meel, C.S., et al., What motivates the adolescent? Brain regions mediating reward sensitivity across adolescence, Cereb. Cortex, 2010, vol. 20, no. 1, p. 61.

    PubMed  Google Scholar 

  46. Telzer, E.H., Dopaminergic reward sensitivity can promote adolescent health: a new perspective on the mechanism of ventral striatum activation, Dev. Cognit. Neurosci., 2016, vol. 17, p. 57.

    Google Scholar 

  47. Harris, K.M. and McDade, T.W., The biosocial approach to human development, behavior, and health across the life course, Russell Sage Found. J. Soc. Sci., 2018, vol. 4, no. 4, p. 2.

    Google Scholar 

  48. Galvan, A., Hare, T., Voss, H., et al., Risk-taking and the adolescent brain: who is at risk? Dev. Sci., 2007, vol. 10, no. 2, p. F8.

    PubMed  Google Scholar 

  49. Scherf, K S., Smyth, J.M., and Delgado, M.R., The amygdala: an agent of change in adolescent neural networks, Horm. Behav., 2013, vol. 64, no. 2, p. 298.

    PubMed  PubMed Central  Google Scholar 

  50. Lukashevich, I.P., Machinskaya, R.I., and Fishman, M.N., The EEG-EXPERT automatic diagnostic system, Biomed. Eng., 1999, vol. 33, no. 6, p. 302.

    Google Scholar 

  51. Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka (The Development of the Brain and Cognitive Activity of a Child), Farber, D.A. and Bezrukikh, M.M., Eds., Moscow: Mosk. Psikhol.-Sots. Inst., 2009.

    Google Scholar 

  52. Machinskaya, R.I., Semenova, O.A., Absatova, K.A., and Sugrobova, G.A., Neurophysiological factors associated with cognitive deficits in children with ADHD symptoms: EEG and neuropsychological analysis, Psychol. Neurosci., 2014, vol. 7, no. 4, p. 461.

    Google Scholar 

  53. Semenova, O.A. and Machinskaya, R.I., The influence of the functional state of brain regulatory systems on the efficiency of voluntary regulation of cognitive activity in children: II. neuropsychological and EEG analysis of brain regulatory functions in 10–12-year-old children with learning difficulties, Hum. Physiol., 2015, vol. 41, no. 5, p. 478.

    Google Scholar 

  54. Luriya, A.R., Funktsional’naya organizatsiya mozga. Estestvenno-nauchnye osnovy psikhologii (Functional Organization of Brain: Natural Scientific Principles of Psychology), Smirnova, A.A., Luriya, A.R., and Nebylitsyna, V.D., Eds., Moscow: Pedagogika, 1978, p. 109.

    Google Scholar 

  55. Henry, J.C., Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Niedermeyer E. and Lopes da Silva F., Eds., Baltimore: Lippincott Williams & Wilkins, 2005, 5th ed.

  56. Goldman-Rakic, P.S. and Porrino, L.J., The primate mediodorsal (MD) nucleus and its projection to the frontal lobe, J. Comp. Neurol., 1985, vol. 242, no. 4, p. 535.

    CAS  PubMed  Google Scholar 

  57. Ouhaz, Z., Fleming, H., and Mitchell, A.S., Cognitive functions and neurodevelopmental disorders involving the prefrontal cortex and mediodorsal thalamus, Front. Neurosci., 2018, vol. 12, art. ID 33.

    PubMed  PubMed Central  Google Scholar 

  58. Maiorchik, V.E., EEG changes depending on the location of the brain tumor, in Klinicheskaya elektroentsefalografiya (Clinical Electroencephalography), Rusinov, V.S., Ed., Moscow: Meditsina, 1973, p. 106.

  59. Lukashevich, I.P. and Sazonova, O.B., Influence of the thalamic local lesions on the human brain electrical activity, Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova, 1996, vol. 46, no. 5, p. 866.

    CAS  PubMed  Google Scholar 

  60. Sarnthein, J., Morel, A., von Stein, A., and Jeanmonod, D., Thalamocortical theta coherence in neurological patients at rest and during a working memory task, Int. J. Psychophysiol., 2005, vol. 57, no. 2, p. 87.

    CAS  PubMed  Google Scholar 

  61. Kim, J., Woo, J., Par, Y.G., et al., Thalamic T-type Ca2+ channels mediate frontal lobe dysfunctions caused by a hypoxia-like damage in the prefrontal cortex, J. Neurosci., 2011, vol. 31, no. 11, p. 4063.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Boldyreva, G.N., Neirofiziologicheskii analiz porazheniya limbiko-dientsefal’nykh struktur mozga cheloveka (Neurophysiological Analysis of Lesions of the Limbic-Diencephalic Structures of the Human Brain), Krasnodar: Ekoinvest, 2009.

  63. Boldyreva, G.N., Atypical forms of cerebral α-activity in the case of lesions in regulatory structures of the human brain, Hum. Physiol., 2018, vol. 44, no. 3, p. 246.

    Google Scholar 

  64. Connemann, B.J., Mann, K., Lange-Asschenfeldt, C., et al., Anterior limbic alpha-like activity: a low-resolution electromagnetic tomography study with lorazepam challenge, Clin. Neurophysiol., 2005, vol. 116, no. 4, p. 886.

    PubMed  Google Scholar 

  65. Yamamoto, S., Kitamura, Y., Yamada, N., et al., Medial prefrontal cortex and anterior cingulate cortex in the generation of alpha activity induced by transcendental meditation: a magnetoencephalographic study, Acta Med. Okayama, 2006, vol. 60, no. 1, p. 51.

    PubMed  Google Scholar 

  66. Knyazev, G., EEG correlates of self-referential processing, Front. Hum. Neurosci., 2013, vol. 7, art. ID 264.

    PubMed  PubMed Central  Google Scholar 

  67. Kim, J.S., Shin, K.S., Jung, W.H., et al., Power spectral aspects of the default mode network in schizophrenia: an MEG study, BMC Neurosci., 2014, vol. 15, p. 104.

    PubMed  PubMed Central  Google Scholar 

  68. Fingelkurts, A. and Fingelkurts, A., Persistent operational synchrony within brain default-mode network and self-processing operations in healthy subjects, Brain Cognit., 2011, vol. 75, no. 2, p. 79.

    Google Scholar 

  69. Davis, P., Zaki, Y., Maguire, J., and Reijmers, L.G., Cellular and oscillatory substrates of fear extinction learning, Nat. Neurosci., 2017, vol. 20, no. 11, p. 1624.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zheng, J., Stevenson, R.F., Mander, B.A., et al., Multiplexing of theta and alpha rhythms in the amygdala-hippocampal circuit supports pattern separation of emotional information, Neuron, 2019, vol. 102, no. 4, p. 887.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Johnstone, J., Gunkelman, J., and Lunt, J., Clinical database development: characterization of EEG phenotypes, Clin. EEG Neurosci., 2005, vol. 36, no. 2, p. 99.

    CAS  PubMed  Google Scholar 

  72. Arns, M., Swatzyna, R.J., Gunkelman, J., and Olbrich, S., Sleep maintenance, spindling excessive beta and impulse control: an RdoC arousal and regulatory systems approach? Neuropsychiatr. Electrophysiol., 2015, vol. 1, no. 1, p. 5.

    Google Scholar 

  73. Kropotov, J.D., Functional Neuromarkers for Psychiatry, San Diego: Academic, 2016.

    Google Scholar 

  74. Clarke, A.R., Barry, R.J., Dupuy, F.E., et al., Excess beta activity in the EEG of children with attention-deficit/hyperactivity disorder: a disorder of arousal? Int. J. Psychophysiol., 2013, vol. 89, no. 3, p. 314.

    PubMed  Google Scholar 

  75. Mallet, N., Pogosyan, A., Márton, L.F., et al., Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity, J. Neurosci., 2008, vol. 28, no. 52, p. 14 245.

    Google Scholar 

  76. Degos, B., Deniau, J. M., Chavez, M., and Maurice, N., Chronic but not acute dopaminergic transmission interruption promotes a progressive increase in cortical beta frequency synchronization: relationships to vigilance state and akinesia, Cereb. Cortex, 2009, vol. 19, no. 7, p. 1616.

    PubMed  Google Scholar 

  77. Williams, D., Tijssen, M., van Bruggen, G., et al., Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans, Brain, 2002, vol. 125, no. 7, p. 1558.

    PubMed  Google Scholar 

  78. Brown, P. and Williams, D., Basal ganglia local field potential activity: character and functional significance in the human, Clin. Neurophysiol., 2005, vol. 116, no. 11, p. 2510.

    PubMed  Google Scholar 

  79. Weinberger, M., Mahant, N., Hutchison, W.D., et al., Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease, J. Neurophysiol., 2006, vol. 96, no. 6, p. 3248.

    PubMed  Google Scholar 

  80. McCarthy, M.M., Moore-Kochlacs, C., Gu, X., et al., Striatal origin of the pathologic beta oscillations in Parkinson’s disease, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 28, p. 11 620.

    Google Scholar 

  81. Sherman, M.A., Lee, S., Law, R., et al., Neural mechanisms of transient neocortical beta rhythms: converging evidence from humans, computational modeling, monkeys, and mice, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 33, p. e4885.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Holgado, A.J., Terry, J.R., and Bogacz, R., Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network, J. Neurosci., 2010, vol. 30, no. 37, p. 12 340.

    Google Scholar 

  83. Kuhn, A.A., Williams, D., Kupsch, A., et al., Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance, Brain, 2004, vol. 127, no. 4, p. 735.

    PubMed  Google Scholar 

  84. Alexander, G.E., DeLong, M.R., and Strick, P.L., Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Annu. Rev. Neurosci., 1986, vol. 9, p. 357.

    CAS  PubMed  Google Scholar 

  85. Accolla, E.A., Herrojo Ruiz, M., Horn, A., et al., Brain networks modulated by subthalamic nucleus deep brain stimulation, Brain, 2016, vol. 139, no. 9, p. 2503.

    PubMed  Google Scholar 

  86. Latash, L.P., Gipotalamus, prisposobitel’naya aktivnost’ i elektroentsefalogramma (Hypothalamus: Adaptive Activity and Electroencephalogram), Moscow: Nauka, 1968.

  87. Fetiskin, N.P., Kozlov, V.V., and Manuilov, G.M., Sotsial’no-psikhologicheskaya diagnostika razvitiya lichnosti i malykh grupp (Social-Psychological Diagnostics of Development of Personality and Small Groups), Moscow: Inst. Psikhoter., 2002.

  88. Vasin, G., Lobaskova, M., and Gindina, E., The Youth Self Report: validity of the Russian version, SHS Web Conf., 2016, vol. 29, p. 02 041.

  89. Luriya, A.R., Vysshie korkovye funktsii cheloveka i ikh narusheniya pri lokal’nykh porazheniyakh mozga (Human Higher Cortical Functions and Their Failures after Local Brain Lesions), Moscow: Mosk. Gos. Univ., 1969.

  90. Fairchild, G., Hagan, C.C., Passamonti, L., et al., Atypical neural responses during face processing in female adolescents with conduct disorder, J. Am. Acad. Child. Adolesc. Psychiatry., 2014, vol. 53, no. 6. e675.

    Google Scholar 

  91. Hyde, L.W., Shaw, D.S., Murray, L., et al., Dissecting the role of amygdala reactivity in antisocial behavior in a sample of young, low-income, urban men, Clin. Psychol. Sci., 2016, vol. 4, no. 3, p. 527.

    PubMed  Google Scholar 

  92. Catani, M., Dell’acqua, F., and Thiebaut de Schotten, M., A revised limbic system model for memory, emotion and behavior, Neurosci. Biobehav. Rev., 2013, vol. 37, no. 8, p. 1724.

    PubMed  Google Scholar 

  93. Johnstone, T., van Reekum, C.M., Urry, H.L., et al., Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression, J. Neurosci., 2007, vol. 27, no. 33, p. 8877.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Steward, T., Picó-Pérez, M., Mestre-Bach, G., et al., A multimodal MRI study of the neural mechanisms of emotion regulation impairment in women with obesity, Transl. Psychiatry., 2019, vol. 9, no. 1, p. 194.

    PubMed  PubMed Central  Google Scholar 

  95. Blair, R.J., The roles of orbital frontal cortex in the modulation of antisocial behavior, Brain Cognit., 2004, vol. 55, no. 1, p. 198.

    CAS  Google Scholar 

  96. Beer, J.S., John, O.P., Scabini, D., and Knight, R.T., Orbitofrontal cortex and social behavior: integrating self-monitoring and emotion-cognition interactions, J. Cognit. Neurosci., 2006, vol. 18, no. 6, p. 871.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 17-06-00837).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Machinskaya.

Ethics declarations

Conflict of interests. The authors declare no apparent and potential conflicts of interest related to the publication of this article.

Statement of compliance with standards of research involving humans as subjects. All studies were carried out in accordance with the principles of biomedical ethics formulated in the Helsinki Declaration of 1964 and its subsequent updates, and approved by the local bioethical committee of the Institute of Developmental Physiology, the Russian Academy of Education (Moscow).

Informed consent. Adolescents participated in the study voluntarily. Parents of adolescents submitted written informed consent for their children to participate in the study, signed after clarifying the potential risks and benefits, as well as the nature of the study.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machinskaya, R.I., Zakharova, M.N. & Lomakin, D.I. Brain Regulatory Functions in Adolescents with Signs of Deviant Behavior. An Interdisciplinary Analysis. Hum Physiol 46, 264–280 (2020). https://doi.org/10.1134/S0362119720030111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720030111

Keywords:

Navigation