Skip to main content
Log in

Development of Spatiotemporal EEG Organization in Males and Females Aged 8–30 Years during Comprehension of Oral and Written Texts

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The maturation of brain structures and their connections and the improvement of verbal skills are the two key processes forming the central mechanisms of verbal activity; it is almost impossible to evaluate their separate contributions. Apart from age, gender has a significant effect on the structural and functional characteristics of the brain and cognitive activity. Despite the fact that the influence of gender is less pronounced than that of age, it cannot be ignored. We studied the effect of age and gender characteristics of the neurophysiological mechanisms of perception of oral and written texts on the spatial organization of brain bioelectric potentials. Spatial synchronization of brain bioelectric potentials (SSBP) was evaluated in 143 subjects (children aged 8–11 years, adolescents aged 12–14 years and 15–17 years, and adults) based on the changes in the integral indicator “volume” of 20 EEG vectors and the degree of connections of EEG signals. It was found that there was a gradual increase in the spatial synchronization of brain bioelectric potentials with age, both during quiet wakefulness and verbal activity, while the level of SSBP in all age groups during verbal task performance was lower than in the background state. In adolescents, gender-related differences included the changes in the levels of SSBP during verbal activity (for oral perception, at the age of 12 years; for reading, at the age of 15 years). Males and females had different trajectories of the formation of distant EEG connections, which had zonal specificity for the studied types of verbal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Farber, D.A., Machinskaya, R.I., Kurgansky, A.V., and Petrenko, N.E., Functional organization of the brain in the period of preparation for recognizing fragmented images in seven- to eight-year-old children and adults, Hum. Physiol., 2014, vol. 40, no. 5, p. 475.

    Google Scholar 

  2. Semenova, O.A., Machinskaya, R.I., and Lomakin, D.I., The influence of the functional state of brain regulatory systems on the programming, selective regulation and control of cognitive activity in children: I. Neuropsychological and EEG analysis of age-related changes in brain regulatory functions in children aged 9–12 years, Hum. Physiol., 2015, vol. 41, no. 4, p. 345.

    CAS  Google Scholar 

  3. Sokolova, L.V., EEG correlates of selective attention in schoolchildren with different reading progress, Fiziol. Chel., 2003, vol. 29, no. 3, p. 136.

    CAS  Google Scholar 

  4. Grigorenko, E.L., Kornev, A.N., Rakhlin, N., et al., Reading-related skills, reading achievement, and inattention: a correlational study, J. Cognit. Educ. Psychol., 2011, vol. 10, no. 2, p. 140.

    Google Scholar 

  5. Kornev, A.N., Stolyarova, E.I., Galperina, E.I., and Giiemar, D.M., The formation of sensorimotor mechanisms of syllable production at the initial stage of reading, Pediatr, 2014, vol. 5, no. 4, p. 85.

    Google Scholar 

  6. Grigor’ev, A.S. and Lyakso, E.E., Auditory perception of the words by 5–8 years old children, Sens. Sist., 2014, vol. 28, no. 3, p. 28.

    Google Scholar 

  7. Berl, M.M., Duke, E.S., Mayo, J., et al., Functional anatomy of listening and reading comprehension during development, Brain Lang., 2010, vol. 114, no. 2, p. 115.

    PubMed  PubMed Central  Google Scholar 

  8. Deniz, F., Nunez-Elizalde, A.O., Huth, A.G., et al., The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality, J. Neurosci., 2019, vol. 39, no. 39, p. 7722.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sowell, E.R., Thompson, P.M., and Toga, A.W., Mapping changes in the human cortex throughout the span of life, Neuroscientist, 2004, vol. 10, no. 4, p. 372.

    PubMed  Google Scholar 

  10. Tiemeier, H., Lenroot, R.K., Greenstein, D.K., et al., Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study, NeuroImage, 2010, vol. 49, no. 1, p. 63.

    PubMed  Google Scholar 

  11. Giedd, J.N., Raznahan, A., Alexander-Bloch, A., et al., Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development, Neuropsychopharmacology, 2015, vol. 40, no. 3, p. 43.

    PubMed  Google Scholar 

  12. Vijayakumar, N., Op de Macks, Z., Shirtcliff, E.A., and Pfeifer, J.H., Puberty and the human brain: Insights into adolescent development, Neurosci. Biobehav. Rev., 2018, vol. 92, p. 417.

    PubMed  PubMed Central  Google Scholar 

  13. Mizuguchi, N., Maudrich, T., Kenville, R., et al., Structural connectivity prior to whole-body sensorimotor skill learning associates with changes in resting state functional connectivity, NeuroImage, 2019, vol. 197, p. 191.

    PubMed  Google Scholar 

  14. Aboud, K.S., Bailey, S.K., Petrill, S.A., et al., Comprehending text versus reading words in young readers with varying reading ability: distinct patterns of functional connectivity from common processing hubs, Dev. Sci., 2016, vol. 19, no. 4, p. 632.

    PubMed  PubMed Central  Google Scholar 

  15. Stevens, M.C., The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation, Neurosci. Biobehav. Rev., 2016, vol. 70, p. 13.

    PubMed  Google Scholar 

  16. O’Neill, G.C., Tewarie, P., Vidaurre, D., et al., Dynamics of large-scale electrophysiological networks: a technical review, NeuroImage, 2018, vol. 180. Pt. B, p. 559.

  17. Wang, S.H., Lobier, M., Siebenhühner, F., et al., Hyperedge bundling: A practical solution to spurious interactions in MEG/EEG source connectivity analyses, NeuroImage, 2018, vol. 173, p. 610.

    PubMed  Google Scholar 

  18. Schaller, F., Weiss, S., and Müller, H.M., EEG beta-power changes reflect motor involvement in abstract action language processing, Brain Lang., 2017, vol. 168, p. 95.

    PubMed  Google Scholar 

  19. Tsitseroshin, M.N. and Shepoval’nikov, A.N., Stanovlenie integrativnoi funktsii mozga (Formation of Integrative Function of the Brain), St. Petersburg: Nauka, 2009.

  20. Machinskaya, R.I. and Kurgansky, A.V., Frontal bilateral synchronous theta waves and the resting EEG coherence in children aged 7–8 and 9–10 with learning difficulties, Hum. Physiol., 2013, vol. 39, no. 1, p. 58.

    Google Scholar 

  21. Lenroot, R.K. and Giedd, J.N., Sex differences in the adolescent brain, Brain Cognit., 2010, vol. 72, no. 1, p. 46.

    Google Scholar 

  22. Soroko, S.I., Bekshaev, S.S., and Rozhkov, V.P., EEG correlates of genophenotypic characteristics of brain development in children of the aboriginal and settler populations in northeast Russia, Neurosci. Behav. Physiol., 2013, vol. 43, no. 7, pp. 783–798.

    Google Scholar 

  23. Panasevich, E.A. and Tsitseroshin, M.N., The ability to successfully perform different kinds of cognitive activity is reflected in the topological features of intercortical interactions: sex-related differences between boys and girls aged five to six years, Hum. Physiol., 2015, vol. 41, no. 5, p. 487.

    Google Scholar 

  24. Guillemard (Tsaparina), D.M., Tsitseroshin, M.N., Shepovalnikov, A.N., et al., Ontogenetic development of neurophysiological mechanisms underlying language processing, in Evolutionary Physiology and Biochemistry: Advances and Perspectives, London: InTech Open, 2018, p. 75.

  25. Etchell, A., Adhikari, A., Weinberg, L.S., et al., A systematic literature review of sex differences in childhood language and brain development, Neuropsychologia., 2018, vol. 114, p. 19.

    PubMed  PubMed Central  Google Scholar 

  26. Benninger, C., Matthis, P., and Scheffner, D., EEG development of healthy boys and girls. Results of a longitudinal study, EEG Clin. Neurophysiol., 1984, vol. 57, no. 1, p. 1.

    CAS  Google Scholar 

  27. Gorbachevskaya, N.L., Yakupova, L.P., Kozhushko, L.F., and Simernitskaya, E.G., Neurobiological causes of school disadaptation, Fiziol. Chel., 1991, vol. 17, no. 5, p. 72.

    Google Scholar 

  28. Razumnikova, O.M., Myshlenie i funktsional’naya asimmetriya mozga (Thinking and Functional Asymmetry of the Brain), Novosibirsk: Sib. Otd., Ross. Akad. Med. Nauk, 2004.

  29. Hyde, J.S., The gender similarities hypothesis, Am. Psychol., 2005, vol. 60, no. 6, p. 581.

    PubMed  Google Scholar 

  30. Reynolds, M.R., Scheiber, C., Hajovsky, D.B., et al., Gender differences in academic achievement: Is writing an exception to the gender similarities hypothesis? J. Genet. Psychol., 2015, vol. 176, nos. 3–4, p. 211.

    PubMed  Google Scholar 

  31. Burman, D.D., Minas, T., Bolger, D.J., and Booth, J.R., Age, sex, and verbal abilities affect location of linguistic connectivity in ventral visual pathway, Brain Lang., 2013, vol. 124, no. 2, p. 184.

    PubMed  PubMed Central  Google Scholar 

  32. Dennis, E.L. and Thompson, P.M., Reprint of: Mapping connectivity in the developing brain, Int. J. Dev. Neurosci., 2014, vol. 32, p. 41.

    PubMed  Google Scholar 

  33. Goddings, A.L., Mills, K.L., Clasen, L.S., et al., The influence of puberty on subcortical brain development, NeuroImage, 2014, vol. 88, p. 242.

    PubMed  PubMed Central  Google Scholar 

  34. Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka (The Development of the Brain and Cognitive Activity of a Child), Farber, D.A. and Bezrukikh, M.M., Eds., Moscow: Mosk. Psikhol.-Sots. Inst., 2009.

    Google Scholar 

  35. Dennison, M., Whittle, S., Yücel, M., et al., Mapping subcortical brain maturation during adolescence: evidence of hemisphere- and sex-specific longitudinal changes, Dev. Sci., 2013, vol. 16, no. 5, p. 772.

    PubMed  Google Scholar 

  36. Kansaku, K. and Kitazawa, S., Imaging studies on sex differences in the lateralization of language, Neurosci. Res., 2001, vol. 41, no. 4, p. 333.

    CAS  PubMed  Google Scholar 

  37. Dehaene-Lambertz, G, Hertz-Pannier, L, and Dubois, J., Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants, Trends Neurosci., 2006, vol. 29, no. 7, p. 367.

    CAS  PubMed  Google Scholar 

  38. Telkemeyer, S., Rossi, S., Koch, S.P., et al., Sensitivity of newborn auditory cortex to the temporal structure of sounds, J. Neurosci., 2009, vol. 29, no. 47, p. 14 726.

    Google Scholar 

  39. Indefrey, P., Hellwig, F., Herzog, H., et al., Neural responses to the production and comprehension of syntax in identical utterances, Brain Lang., 2004, vol. 89, no. 2, p. 312.

    PubMed  Google Scholar 

  40. Richlan, F., The functional neuroanatomy of letter-speech sound integration and its relation to brain abnormalities in developmental dyslexia, Front. Hum. Neurosci., 2019, vol. 13, p. 21.

    PubMed  PubMed Central  Google Scholar 

  41. Pugh, K.R., Mencl, W.E., Jenner, A.R., et al., Functional neuroimaging studies of reading and reading disability (developmental dyslexia), Mental Retard. Dev. Disabil. Res. Rev., 2000, vol. 6, no. 3, p. 207.

    CAS  Google Scholar 

  42. Cohen, L., Lehéricy, S., Chochon, F., et al., Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area, Brain, 2002, vol. 125, no. 5, p. 1054.

    Google Scholar 

  43. Annett, M., The binomial distribution of right, mixed and left handedness, Q. J. Exp. Psychol., 1967, vol. 19, no. 4, p. 327.

    CAS  PubMed  Google Scholar 

  44. Barvinok, A.I. and Rozhkov, V.P., Specific intercentral coordination of cortical electrical processes in mental activity, Fiziol. Chel., 1992, vol. 18, no. 3, p. 5.

    CAS  Google Scholar 

  45. Gantmakher, F.R., Teoriya matrits (Matrix Theory), Moscow: Nauka, 1967.

  46. Kruchinina, O.V., Galperina, E.I., and Shepoval-nikov, A.N., Characteristics of the spatial organization of oscillations of brain bioelectric potentials in adolescents, Hum. Physiol., 2014, vol. 40, no. 5, p. 483.

    Google Scholar 

  47. Kruchinina, O.V. and Galperina, E.I. Spatio-temporal organization of EEG in 12–13 and 15–17 years old adolescents during reading texts, Nov. Issled., 2018, no. 3, p. 5.

  48. Pavlova, L.P. and Romanenko, A.F., Sistemnyi podkhod k psikhofiziologicheskomu issledovaniyu mozga cheloveka (System Approach to Psychophysiological Study of Human Brain), Leningrad: Nauka, 1988.

  49. Dubrovinskaya, N.V., Speech development and organization of verbal activity, in Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka (The Development of the Brain and Cognitive Activity of a Child), Farber, D.A. and Bezrukikh, M.M., Eds., Moscow: Mosk. Psikhol.-Sots. Inst., 2009, p. 327.

  50. Tsitseroshin, M.N. and Galperina, E.I., Correlative formation of functions as one of mechanisms of functional evolution (by example of development in child’s ontogenesis of central maintenance of stereognosis and speech function), J. Evol. Biochem. Physiol., 2012, vol. 48, no. 3, p. 355.

    Google Scholar 

  51. Michael, E.B., Keller, T.A., Carpenter, P.A., and Just, M.A., fMRI investigation of sentence comprehension by eye and by ear: modality fingerprints on cognitive processes, Hum. Brain Mapp., 2001, vol. 13, no. 4, p. 239.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shepoval’nikov, A.N., Tsitseroshin, M.N., and Levinchenko, N.V., “Age-related minimization” of brain regions involved in systemic provision of mental functions: arguments for and against, Fiziol. Chel., 1991, vol. 17, no. 5, p. 28.

    Google Scholar 

  53. Thomason, M.E., Chang, C.E., Glover, G.H., et al., Default-mode function and task-induced deactivation have overlapping brain substrates in children, NeuroImage., 2008, vol. 41, no. 4, p. 1493.

    PubMed  PubMed Central  Google Scholar 

  54. Fair, D.A., Cohen, A.L., Power, J.D., et al., Functional brain networks develop from a “local to distributed” organization, PLoS Comput. Biol., 2009, vol. 5, no. 5, p. e1 000 381.

    Google Scholar 

  55. Szostakiwskyj, J.M.H., Willatt, S.E., Cortese, F., et al., The modulation of EEG variability between internally- and externally-driven cognitive states varies with maturation and task performance, PLoS One, 2017, vol. 12, no. 7, p. e0 181 894.

    Google Scholar 

  56. Norton, E.S., Beach, S.D., and Gabrieli, J.D., Neurobiology of dyslexia, Curr. Opin. Neurobiol., 2015, vol. 30, p. 73.

    CAS  PubMed  Google Scholar 

  57. Wilson, S.M., Bautista, A., and McCarron, A., Convergence of spoken and written language processing in the superior temporal sulcus, NeuroImage, 2018, vol. 171, p. 62.

    PubMed  Google Scholar 

  58. Bookheimer, S., Functional MRI of language: new approaches to understanding the cortical organization of semantic processing, Annu. Rev. Neurosci., 2002, vol. 25, p. 151.

    CAS  PubMed  Google Scholar 

  59. Coltheart, M., Modeling reading: the dual-route approach, in The Science of Reading: A Handbook, Snowling, M.J. and Hulme, C., Eds., Oxford: Blackwell, 2005, p. 6.

    Google Scholar 

  60. Spironelli, C., Penolazzi, B., and Angrilli, A., Gender differences in reading in school-aged children: an early ERP study, Dev. Neuropsychol., 2010, vol. 35, no. 4, p. 357.

    PubMed  Google Scholar 

  61. Hyde, J.S., Sex and cognition: gender and cognitive functions, Curr. Opin. Neurobiol., 2016, vol. 38, p. 53.

    CAS  PubMed  Google Scholar 

  62. Hirnstein, M., Hugdahl, K., and Hausmann, M., Cognitive sex differences and hemispheric asymmetry: a critical review of 40 years of research, Laterality, 2019, vol. 24, no. 2, p. 204.

    PubMed  Google Scholar 

  63. Galperina, E.I., Kruchinina, O.V., and Rozhkov, V.P., Spatial synchronization of brain bioelectric potentials differs in boys and girls aged 12–13 years reading narrative texts, Hum. Physiol., 2018, vol. 44, no. 2, p. 143.

    Google Scholar 

  64. Ingalhalikar, M., Smith, A., Parker, D., et al., Sex differences in the structural connectome of the human brain, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 2, p. 823.

    CAS  PubMed  Google Scholar 

  65. Marosi, E., Harmony, T., Becker, J., et al., Sex differences in EEG coherence in normal children, Int. J. Neurosci., 1993, vol. 72, nos. 1–2, p. 115.

    CAS  PubMed  Google Scholar 

  66. Tyan, Y.-S., Liao, J.-R., Shen, C.-Y., et al., Gender differences in the structural connectome of the teenage brain revealed by generalized q-sampling MRI, NeuroImage: Clin., 2017, vol. 15, p. 376.

    Google Scholar 

  67. Perrin, J.S., Herve, P.-Y., Leonard, G., et al., Growth of white matter in the adolescent brain: Role of testosterone and androgen receptor, J. Neurosci., 2008, vol. 28, no. 38, p. 9519.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Herting, M.M., Kim, R., Uban, K.A., et al., Longitudinal changes in pubertal maturation and white matter microstructure, Psychoneuroendocrinology, 2017, vol. 81, p. 70.

    PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.P. Rozhkov (Cand. Sci. (Biology)) for providing methodological assistance.

Funding

The studies in the group of adolescents (12–17 years old) were partially supported by the Russian Foundation for Basic Research (project no. 18-313-00169); the studies in the groups of children (4–11 years old) and adults were supported by State Contract no. 075-00776-19-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kruchinina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruchinina, O.V., Stankova, E.P. & Galperina, E.I. Development of Spatiotemporal EEG Organization in Males and Females Aged 8–30 Years during Comprehension of Oral and Written Texts. Hum Physiol 46, 244–256 (2020). https://doi.org/10.1134/S036211972003010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972003010X

Keywords:

Navigation