Skip to main content
Log in

New Concepts on the Implementation of Motor and Cognitive Functions in the Brain: Facts and Hypotheses

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The rapid development of neurosciences in the past two decades has led to the emergence of new experimentally based facts and increased the number of hypotheses on the implementation of motor and cognitive brain functions. The purpose of the review is to present the most important part of this new material; this should be taken into consideration in planning and conducting both fundamental and applied research on brain functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Marconi, B., Genovesio, A., Battaglia-Mayer, A., et al., Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex, Cereb. Cortex, 2001, vol. 11, no. 6, p. 513.

    CAS  PubMed  Google Scholar 

  2. Fleming, J.F. and Crosby, E.C., The parietal lobe as an additional motor area; the motor effects of electrical stimulation and ablation of cortical areas 5 and 7 in monkeys, J. Comp. Neurol., 1955, vol. 103, no. 3, p. 485.

    CAS  PubMed  Google Scholar 

  3. Mountcastle, V.B., Lynch, J.C., Georgopoulos, A., et al., Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space, J. Neurophysiol., 1975, vol. 38, no. 4, p. 871.

    CAS  PubMed  Google Scholar 

  4. Rathelot, J.A., Dum, R.P., and Strick, P.L., Posterior parietal cortex contains a command apparatus for hand movements, Proc. Natl. Acad. Sci. U.S.A., 2017, vol.  14, no. 16, p. 4255.

    Google Scholar 

  5. Gardner, E.P., Neural pathways for cognitive command and control of hand movements, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 16, p. 4048.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mazurek, K.A. and Schieber, M.H., Injecting instructions into premotor cortex, Neuron, 2017, vol. 96, no. 6, p. 1282.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lebedev, M.A. and Ossadtchi, A., Commentary: injecting instructions into premotor cortex, Front. Cell. Neurosci., 2018, vol. 12, p. 65.

    PubMed  PubMed Central  Google Scholar 

  8. Bouton, C.E., Shaikhouni, A., Annetta, N.V., et al., Restoring cortical control of functional movement in a human with quadriplegia, Nature, 2016, vol. 533, no. 7602, p. 247.

    CAS  PubMed  Google Scholar 

  9. Capogrosso, M., Milekovic, T., Borton, D., et al., A brain-spine interface alleviating gait deficits after spinal cord injury in primates, Nature, 2016, vol. 539, no. 7628, p. 284.

    PubMed  PubMed Central  Google Scholar 

  10. Middleton, F.A. and Strick, P.L., Basal ganglia and cerebellar loops: motor and cognitive circuits, Brain Res. Rev., 2000, vol. 31, no. 2–3, p. 236.

    CAS  PubMed  Google Scholar 

  11. Dum, R.P. and Strick, P.L., Transneuronal tracing with neurotropic viruses reveals network macroarchitecture, Cur. Opin. Neurobiol., 2013, vol. 23, no. 2, p. 245.

    CAS  Google Scholar 

  12. Bostan, A.C., Dum, R.P., and Strick, P.L., The basal ganglia communicate with the cerebellum, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 18, p. 8452.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoshi, E., Tremblay, L., Féger, J., et al., The cerebellum communicates with the basal ganglia, Nat. Neurosci., 2005, vol. 8, no. 11, p. 1491.

    CAS  PubMed  Google Scholar 

  14. Bostan, A.C. and Strick, P.L., The cerebellum and basal ganglia are interconnected, Neuropsychol. Rev., 2010, vol. 20, no. 3, p. 261.

    PubMed  PubMed Central  Google Scholar 

  15. Strick, P.L., Dum, R.P., and Fiez, J.A., Cerebellum and nonmotor function, Ann. Rev. Neurosci., 2009, vol. 32, p. 413.

    CAS  PubMed  Google Scholar 

  16. Hamani, C., Saint-Cyr, J. A., Fraser, J., et al., The subthalamic nucleus in the context of movement disorders, Brain, 2004, vol. 127, no. 1, p. 4.

    PubMed  Google Scholar 

  17. Bostan, A.C. and Strick, P.L., The basal ganglia and the cerebellum: nodes in an integrated network, Nat. Rev. Neurosci., 2018, vol. 19, no. 6, p. 338.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pelzer, E.A., Hintzen, A., Goldau, M., et al., Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain, Eur. J. Neurosci., 2013, vol. 38, no. 8, p. 3106.

    PubMed  Google Scholar 

  19. Wedeen, V.J., Hagmann, P., Tseng, W., et al., Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging, Magn. Reson. Med., 2005, vol. 54, no. 6, p. 1377.

    PubMed  Google Scholar 

  20. Caligiore, D., Pezzulo, G., Baldassarre, G., et al., Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex, Cerebellum, 2017, vol. 16, no. 1, p. 203.

    PubMed  Google Scholar 

  21. Bostan A.C., Strick P.L. Cerebellar connections with the cerebral cortex and the basal ganglia. In: Caligiore D., Pezzulo G., Baldassarre G. et al. Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex // Cerebellum. 2017. V. 16. № 1. P. 205.

  22. Verschure P.F.M.J., Zucca R., Herreros I. Regulating the recruitment of the cerebellum via the nucleo-olivary inhibition. In: Ibid. P. 207.

  23. Jörntell H. Spinocerebellar circuitry—consequences for the organization of neocortical motor control. In: Ibid. P. 209.

  24. Houk J. The DPM architecture for learning and control. In: Ibid. P. 210.

  25. Doya K. Cerebellum and basal ganglia work together for model-based actions. In: Ibid. P. 212.

  26. Miall R.C. A systems-level view of cerebellar motor and cognitive function. In: Ibid. P. 214.

  27. Lago-Rodriguez A., Galea J.M. What have we learnt from non-invasive brain stimulation studies regarding the role of the cerebellum and its interactions with other brain regions in motor control and learning? In: Ibid. P. 215.

  28. Popa T., Kishore A. Cerebellar modulation of cortical plasticity in basal ganglia-related movement disorders. In: Ibid. P. 216.

  29. Caligiore D., Helmich R.C., Dirkx M., Baldassarre G. The basal ganglia-cortical-cerebellar network in Parkinson’s resting tremor. In: Ibid. P. 219.

  30. Caligiore D., Arbib M.A., Miall R.C., and Baldas-sarre G., The super-learning hypothesis: integrating learning processes across cortex, cerebellum and basal ganglia, Neurosci. Biobehav. Rev., 2019, vol. 100, p. 19.

    PubMed  Google Scholar 

  31. Doya, K., What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Network, 1999, vol. 12, nos. 7–8, p. 961.

    CAS  Google Scholar 

  32. Doya, K., Complementary roles of basal ganglia and cerebellum in learning and motor control, Cur. Opin. Neurobiol., 2000, vol. 10, no. 6, p. 732.

    CAS  Google Scholar 

  33. Brito, C.S.N. and Gerstner, W., Nonlinear Hebbian learning as a unifying principle in receptive field formation, PLoS Comput. Biol., 2016, vol. 12, no. 9, p. e1 005 070.

    Google Scholar 

  34. Ngezahayo, A., Schachner, M., and Artola, A., Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus, J. Neurosci., 2000, vol. 20, no. 7, p. 2451.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Knudsen, E.I., Supervised learning in the brain, J. Neurosci., 1994, vol. 14, no. 7, p. 3985.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Niv, Y., Reinforcement learning in the brain, J. Math. Psychol., 2009, vol. 53, no. 3, p. 139.

    Google Scholar 

  37. Miall, R.C. and Galea, J., Cerebellar damage limits reinforcement learning, Brain, 2016, vol. 139, no. 1, p. 4.

    PubMed  Google Scholar 

  38. Doya, K., Metalearning and neuromodulation, Neural Network, 2002, vol. 15, nos. 4–6, p. 495.

    Google Scholar 

  39. Schweighofer, N., Doya, K., and Layc, F., Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control, Neuroscience, 2001, vol. 103, no. 1, p. 35.

    CAS  PubMed  Google Scholar 

  40. Fischer, A.G. and Ullsperger, M., An update on the role of serotonin and its interplay with dopamine for reward, Front. Hum. Neurosci., 2017, vol. 11, p. 484.

    PubMed  PubMed Central  Google Scholar 

  41. Schweighofer, N., Doya, K., and Kuroda, S., Cerebellar aminergic neuromodulation: towards a functional understanding, Brain Res. Rev., 2004, vol. 44, no. 2–3, p. 103.

    PubMed  Google Scholar 

  42. Fonollosa, J., Neftci, E., and Rabinovich, M., Learning of chunking sequences in cognition and behavior, PLoS Comput. Biol., 2015, vol. 11, no. 11, p. e1 004 592.

    Google Scholar 

  43. Gurney, K., Prescott, T.J., and Redgrave, P., A computational model of action selection in the basal ganglia. I. A new functional anatomy, Biol. Cybern., 2001, vol. 84, no. 6, p. 401.

    CAS  PubMed  Google Scholar 

  44. Doyon, J., Penhune, V., and Ungerleider, L.G., Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning, Neuropsychologia, 2003, vol. 41, no. 3, p. 252.

    PubMed  Google Scholar 

  45. Wolpert, D.M., Diedrichsen, J., and Flanagan, J.R., Principles of sensorimotor learning, Nat. Rev. Neuro-sci., 2011, vol. 12, no. 12, p. 739.

    CAS  Google Scholar 

  46. Dudman, J.T. and Krakauer, J.W., The basal ganglia: from motor commands to the control of vigor, Curr. Opin. Neurobiol., 2016, vol. 37, p. 158.

    CAS  PubMed  Google Scholar 

  47. Thorp, E.B., Kording, K.P., and Mussa-Ivaldi, F.A., Using noise to shape motor learning, J. Neurophysiol., 2017, vol. 117, no. 2, p. 728.

    PubMed  Google Scholar 

  48. Seidler, R.D., Noll, D.C., and Chintalapati, P., Bilateral basal ganglia activation associated with sensorimotor adaptation, Exp. Brain Res., 2006, vol. 175, no. 3, p. 544.

    CAS  PubMed  Google Scholar 

  49. Shadmehr, R. and Holcomb, H.H., Neural correlates of motor memory consolidation, Science, 1997, vol. 277, no. 5327, p. 821.

    CAS  PubMed  Google Scholar 

  50. Mathis, M.W., Mathis, A., and Uchida, N., Somatosensory cortex plays an essential role in forelimb motor adaptation in mice, Neuron, 2017, vol. 93, no. 6, p. 1493.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wagner, M.J., Kim, T.H., Savall, J., et al., Cerebellar granule cells encode the expectation of reward, Nature, 2017, vol. 544, no. 7648, p. 96.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Galea, J.M., Mallia, E., Rothwell, J., and Diedrichsen, J., The dissociable effects of punishment and reward on motor learning, Nat. Neurosci., 2015, vol. 18, no. 4, p. 597.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported as a part of Basic Research Project no. 63.1 of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Badakva or N. V. Miller.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Khaitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badakva, A.M., Miller, N.V. & Zobova, L.N. New Concepts on the Implementation of Motor and Cognitive Functions in the Brain: Facts and Hypotheses. Hum Physiol 46, 343–350 (2020). https://doi.org/10.1134/S0362119720030020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720030020

Keywords:

Navigation