Skip to main content
Log in

Reflection of Heart Rate Physiological Regulation Parameters in the Urinary Proteome in Healthy Young Males

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Urine chromatography–mass spectrometry and a heart rate variability (HRV) analysis were performed in 13 healthy males (age 28 ± 4 years, height 174 ± 1 cm, weight 67.9 ± 1.5 kg). Mathematical and bioinformatics analyses identified the proteins that are associated with the condition of the cardiovascular system and the autonomic regulation of the heart rate in the total protein aggregate. The set included serotransferrin, tyrosine-protein kinase receptor UFO, prostatic acid phosphatase, secreted and transmembrane protein 1, cell adhesion molecule 4, galectin-3-binding protein, immunoglobulin heavy constant alpha 1, matrix remodeling-associated protein 8, and biotinidase. Associations were for the first time studied for protein markers of the heart rate autonomic regulation. Proteomics data were used to describe the indicators of the heart rate physiological regulation in the urine proteome of healthy young males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Circulation, 1996, vol. 93, no. 5, p. 1043.

  2. Baevskii, R.M., Ivanov, G.G., Chireikin, L.V., et al., Analysis of heart rate variability using various electrocardiographic systems, Vestn. Aritmol., 2001, no. 24, p. 65.

  3. Nkuipou-Kenfack, E., Koeck, T., Mischak, H., et al., Proteome analysis in the assessment of ageing, Ageing Res. Rev., 2014, vol. 18, p. 74.

    Article  CAS  Google Scholar 

  4. Nosovsky, A., Vassilieva, G., and Kaminskaya, E., Application of multidimensional projections in the practice of medical and biological research, Norw. J. Dev. Int. Sci., 2018, vol. 15, p. 9.

    Google Scholar 

  5. Kiselev, A.R. and Gridnev, V.I., Oscillatory processes in the vegetative regulation of the cardiovascular system, Saratovsk. Nauchno-Med. Zh., 2011, vol. 7, no. 1, p. 34.

  6. Maliani, A., Principles of Cardiovascular Neural Regulation in Health and Disease, Amsterdam: Kluwer, 2000, p. 222.

    Book  Google Scholar 

  7. Shankar, V., Age-related changes in the parasympathetic control of the heart, Int. J. Sci. Res. Publ., 2012, vol. 2, no. 2, p. 1.

    Google Scholar 

  8. Hester, R.L., Iliescu, R., Summers, R., and Coleman, T.G., Systems biology and integrative physiological modelling, J. Physiol., 2011, vol. 589, no. 5, p. 1053.

    Article  CAS  Google Scholar 

  9. Golizeh, M., Lee, K., Ilchenko, S., et al., Increased serotransferrin and ceruloplasmin turnover in diet-controlled patients with type 2 diabetes, Free Radical Biol. Med., 2017, vol. 113, p. 461.

    Article  CAS  Google Scholar 

  10. Fukusaki, C., Kawakubo, K., and Yamamoto, Y., Assessment of the primary effect of aging on heart rate variability in humans, Clin. Auton. Res., 2000, vol. 10, no. 3, p. 123.

    Article  CAS  Google Scholar 

  11. Ferrari, A.U., Radaelli, A., and Centova, V., Invited review: aging and the cardiovascular system, J. Appl. Physiol., 2003, vol. 95, no. 6, p. 2591.

    Article  Google Scholar 

  12. Pankova, N.B., Functional development of the vegetative regulation of the human cardiovascular system in ontogenesis, Ross. Fiziol. Zh. im. I.M. Sechenova, 2008, vol. 94, no. 3, p. 267.

    CAS  PubMed  Google Scholar 

  13. Nidekker, I.G. and Kupriyanova, O.O., Quantitative analysis of the balanced state of neurogenic influences on the heart rate, Hum. Physiol., 2010, vol. 36, no. 2, p. 184.

    Article  Google Scholar 

  14. Orlov, Yu.P., Lukach, V.N., Dolgikh, V.T., et al., Experimental study of pathogenetic role of impaired iron metabolism in the development of microcirculatory disorders during reperfusion, Sib. Med. Zh., 2012, no. 5, p. 71.

  15. Cini, C., Yip, C., Attard, C., et al., Differences intheresting platelet proteome and platelet releasate between healthy children and adults, J. Proteomics, 2015, vol. 123, p. 78.

    Article  CAS  Google Scholar 

  16. Li X., Chen, M., Lei, X., et al., Luteolin inhibits angiogenesis by blocking Gas6/Axl signaling pathway, Int. J. Oncol., 2017, vol. 51, no. 2, p. 677.

    Article  CAS  Google Scholar 

  17. Jin, C.W., Wang, H., Chen, Y.Q., et al., Gas6 delays senescence in vascular smooth muscle cells through the PI3K/Akt/FoxO signaling pathway, Cell Physiol. Biochem., 2015, vol. 35, no. 3, p. 1151.

    Article  CAS  Google Scholar 

  18. Gustafsson, A., Matuszewska, D., Johansson, M., et al., Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement and survival, Clin. Cancer Res., 2009, vol. 15, no. 14, p. 4742.

    Article  CAS  Google Scholar 

  19. Caldentey, G., García De Frutos, P., Cristóbal, H., et al., Serum levels of Growth Arrest-Specific 6 protein and soluble AXL in patients with ST-segment elevation myocardial infarction, Eur. Heart J.: Acute Cardiovasc. Care, 2017. https://doi.org/10.1177/2048872617740833

  20. Batchu, S.N., Xia, J., Ko, K.A., et al., Axl modulates immune activation of smooth muscle cells in vein graft remodeling, Am. J. Physiol. Heart Circ. Physiol., 2015, vol. 309, no. 6, p. 1048.

    Article  Google Scholar 

  21. Batlle, M., Recarte-Pelz, P., Roig, E., et al., AXL receptor tyrosine kinase is increased in patients with heart failure, Int. J. Cardiol., 2014, vol. 73, no. 3, p. 402.

    Article  Google Scholar 

  22. Lam, G.K., Liao, H.X., Xue, Y., et al., Expression of the CD7 ligand K-12 in human thymic epithelial cells: regulation by IFN-γ, J. Clin. Immunol., 2005, vol. 25, no. 1, p. 41.

    Article  CAS  Google Scholar 

  23. Bade-Döding, C., Göttmann, W., Baigger, A., et al., Autocrine GM-CSF transcription in the leukemic progenitor cell line KG1a is mediated by the transcription factor ETS1 and is negatively regulated through SECTM1 mediated ligation of CD7, Biochim. Biophys. Acta, Gen. Subj., 2014, vol. 1840, no. 3, p. 1004.

    Article  Google Scholar 

  24. Huyton, T., Göttmann, W., Bade-Döding, C., et al., The T/NK cell co-stimulatory molecule SECTM1 is an IFN “early response gene” that is negatively regulated by LPS in human monocytic cells, Biochim. Biophys. Acta, Gen. Subj., 2011, vol. 1810, no. 12, p. 1294.

    Article  CAS  Google Scholar 

  25. Lim, W., Bae, H., Sohn, J.Y., et al., Dietary cholesterol affects expression of prostatic acid phosphatase in reproductive organs of male rats, Biochem. Biophys. Res. Commun., 2015, vol. 456, no. 1, p. 421.

    Article  CAS  Google Scholar 

  26. Lambert, N.G., ElShelmani, H., Singh, M.K., et al., Risk factors and biomarkers of age-related macular degeneration, Prog. Retinal Eye Res., 2016, vol. 54, p. 64.

    Article  CAS  Google Scholar 

  27. Zeng, X.X. and Yelon, D., Cadm4 restricts the production of cardiac outflow tract progenitor cells, Cell Rep., 2014, vol. 7, no. 4, p. 951.

    Article  CAS  Google Scholar 

  28. DeRoo, E.P., Wrobleski, S.K., Shea, E.M., et al., The role of galectin-3 and galectin-3–binding protein in venous thrombosis, Blood, 2015, vol. 125, no. 11, p. 1813.

    Article  CAS  Google Scholar 

  29. Gleissner, C.A., Erbel, C., Linden, F., et al., Galectin-3 binding protein, coronary artery disease and cardiovascular mortality: Insights from the LURIC study, Atherosclerosis, 2017, vol. 260, p. 121.

    Article  CAS  Google Scholar 

  30. Sun, Y.X., Gao, C.Y., Wang, X.Q., et al., Serum quantitative proteomic analysis of patients with keshan disease based on iTRAQ labeling technique: a first term study, J. Trace Elem. Med. Biol., 2017, vol. 44, p. 331.

    Article  CAS  Google Scholar 

  31. Nielsen, C.T., Østergaard, O., Rasmussen, N.S., et al., A review of studies of the proteomes of circulating microparticles: key roles for galectin-3-binding protein-expressing microparticles in vascular diseases and systemic lupus erythematosus, Clin. Proteomics, 2017, vol. 14, p. 11.

    Article  Google Scholar 

  32. Xie, H., Chen, L., Liu, H., et al., Expression of Mac-2 binding protein in human carotid atheroma is associated with plaque instability and clinical manifestations, Biomed. Pharmacother., 2019, vol. 110, p. 465.

    Article  CAS  Google Scholar 

  33. Gordon, S.M., Chung, J.H., Playford, M.P., et al., High density lipoprotein proteome is associated with cardiovascular risk factors and atherosclerosis burden as evaluated by coronary CT angiography, Atherosclerosis, 2018, vol. 278, p. 278.

    Article  CAS  Google Scholar 

  34. Kisrieva, Yu.S., Petushkova, N.A., Samenkova, N.F., et al., Comparative proteome analysis of blood plasma of patients with early-stage chronic cerebral ischemia, Biomed. Khim., 2016, vol. 62, no. 5, p. 599.

    Article  CAS  Google Scholar 

  35. Cavassan, N.R.V., Camargo, C.C., de Pontes, L.G., et al., Correlation between chronic venous ulcer exudate proteins and clinical profile: a cross-sectional study, J. Proteomics, 2019, vol. 192, p. 280.

    Article  CAS  Google Scholar 

  36. Zhang, R., Kim, A.S., Fox, J.M., et al., Mxra8 is a receptor for multiple arthritogenic alphaviruses, Nature, 2018, vol. 557, no. 7706, p. 570.

    Article  CAS  Google Scholar 

  37. Yonezawa, T., Ohtsuka, A., Yoshitaka, T., et al., Limitrin, a novel immunoglobulin superfamily protein localized to glia limitans formed by astrocyte endfeet, Glia, 2003, vol. 44, no. 3, p. 190.

    Article  Google Scholar 

  38. Zhao, M., Wu, J., Li, X., and Gao, Y., Urinary candidate biomarkers in an experimental autoimmune myocarditis rat model, J. Proteomics, 2018, vol. 179, p. 71.

    Article  CAS  Google Scholar 

  39. Balfoussia, E., Skenderi, K., Tsironi, M., et al., A proteomic study of plasma protein changes under extreme physical stress, J. Proteomics, 2014, vol. 98, p. 1.

    Article  CAS  Google Scholar 

  40. Panossian, A., Seo, E.-J., and Efferth, T., Synergy assessments of plant extracts used in the treatment of stress and aging-related disorders, Synergy, 2018, vol. 7, p. 39.

    Article  Google Scholar 

  41. Ortega-Sáenz, P., Macías, D., Levitsky, K.L., et al., Selective accumulation of biotin in arterial chemoreceptors: requirement for carotid body exocytotic dopamine secretion, J. Physiol., 2016, vol. 594, no. 24, p. 7229.

    Article  Google Scholar 

  42. Von Zychlinski, A. and Kleffmann, T., Dissecting the proteome of lipoproteins: new biomarkers for cardiovascular diseases? Transl. Proteomics, 2015, vol. 7, p. 30.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Basic Programs 64.1 and 65.3 of the Russian Academy of Sciences for the period from 2013 to 2020. The part of research related to the high resolution mass spectrometry study of urine proteome was supported by Russian Foundation for Basic Research (grant no. 18-34-00524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Rusanov.

Ethics declarations

Conflict of interests. The authors declare that they have no real or potential conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments and were approved by the Ethics Committee at the Institute of Biomedical Problems (Russian Academy of Sciences, Moscow). All individual participants involved in the study voluntarily gave their written informed consent after being informed about the potential risks and benefits and the study nature.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusanov, V.B., Pastushkova, L.H., Goncharova, A.G. et al. Reflection of Heart Rate Physiological Regulation Parameters in the Urinary Proteome in Healthy Young Males. Hum Physiol 46, 182–190 (2020). https://doi.org/10.1134/S0362119720020152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720020152

Keywords:

Navigation