Skip to main content

Biofeedback Specialization Effect on Physiological Tremor Amplitude Dynamics


Physiological tremor amplitude was studied along with the possibility of its biofeedback guided modification. Physiological tremor was recorded using three-axial digital accelerometers fixed on the external side of the index fingers. Subjects were asked to perform a series of 15-s physiological tremor tests with breaks to rest. Four biofeedback modes were used to minimize the following control parameters: hand inclination from a horizontal plane, mean tremor amplitude over both hands, tremor amplitude of the right hand with simulated left hand one, and inverse combination. The tremor amplitudes obtained in biofeedback conditions were compared to normal values, which were recorded before and after biofeedback testing. The possibility of targeted physiological tremor modification in a 8–12 Hz frequency band was proved by the suppression of tremor amplitude in biofeedback conditions. A transition of the tremor suppression effect in the band 8–12 Hz was observed; i.e., the tremor amplitude from the dominant arm significantly decreased when biofeedback parameters were obtained from the contralateral arm.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. 1

    Soroko, S.I. and Trubachev, V.V., Neirofiziologicheskie i psikhofiziologicheskie osnovy adaptivnogo bioupravle-niya (Neurophysiological and Psychophysiological Basis of Adaptive Bioregulation), St. Petersburg: Politekhnika-Servis, 2010.

  2. 2

    Voskovskaya, L.V., Dykhan, L.B., and Kamenskaya, E.N., The development of emotional stability in archery athletes by the functional biocontrol with biological feedback, Teor. Prakt. Fiz. Kul’t., 2016, no. 9, p. 66.

  3. 3

    Dzhabrailov, A.N. and Gorgoshidze, L.Z., Biological feedback as a method for optimization of a functional state during psychoemotional stress, Vestn. Dagest. Gos. Univ., Ser. 1: Estestv. Nauki, 2016, no. 1, p. 108.

  4. 4

    Bogdanov, E.A., Petrov, V.A., Botman, S.A., et al., Development of a neurodevice with a biological feedback for compensating for lost motor functions, Bull. Russ. State Med. Univ., 2016, no. 2, p. 29.

  5. 5

    Shamro, O.A. and Shamro, A.O., Multifunctional device with biological feedback for the recovery and development of hand function, MEDICUS, 2016, no. 3, p. 61.

  6. 6

    Espay, A.J., Edwards, M.J., Oggioni, G.D., et al., Tremor retrainment as therapeutic strategy in psychogenic (functional) tremor, Parkinsonism Relat Disord., 2014, vol. 20, no. 6, p. 647.

    CAS  Article  Google Scholar 

  7. 7

    Maneski, P.L., Ilic, N.J., Dosen, S., et al., Electrical stimulation for the suppression of pathological tremor, Med. Biol. Eng. Comput., 2011, vol. 49, no. 10, p. 1187.

    Article  Google Scholar 

  8. 8

    Albert, M.V. and Kording, K.P., Determining posture from physiological tremor, Exp. Brain Res., 2011, vol. 215, nos. 3–4, p. 247.

    Article  Google Scholar 

  9. 9

    Duval, C. and Jones, J., Assessment of the amplitude of oscillations associated with high-frequency components of physiological tremor: impact of loading and signal differentiation, Exp. Brain Res., 2005, vol. 163, no. 2, p. 261.

    Article  Google Scholar 

  10. 10

    Hallett, M., Classification and treatment of tremor, JAM-A,J. Am. Med. Assoc., 1991, vol. 266, no. 8, p. 1115.

    CAS  Article  Google Scholar 

  11. 11

    Carignan, B., Daneault, J., and Duval, C., The organization of upper limb physiological tremor, Eur. J. Appl. Physiol., 2012, vol. 112, no. 4, p. 1269.

    Article  Google Scholar 

  12. 12

    Legge, G.E. and Campbell, F.W., Displacement detection in human vision, Vision Res., 1981, vol. 21, no. 2, p. 205.

    CAS  Article  Google Scholar 

  13. 13

    Regan, D. and Beverley, K., Visual fields for frontal plane motion and for changing size, Vision Res., 1983, vol. 23, no. 7, p. 673.

    CAS  Article  Google Scholar 

  14. 14

    Harwell, R.C. and Ferguson, R.L., Physiologic tremor and microsurgery, Microsurgery, 1983, vol. 4, no. 3, p. 187.

    CAS  Article  Google Scholar 

  15. 15

    Vasilakos, K., Glass, L., and Beuter, A., Interaction of tremor and magnification in a motor performance task with visual feedback, J. Mot. Behav., 1998, vol. 30, no. 2, p. 158.

    CAS  Article  Google Scholar 

  16. 16

    Carignan, B., Daneault, J.F., and Duval, C., The amplitude of physiological tremor can be voluntarily modulated, Exp. Brain Res., 2009, vol. 194, no. 2, p. 309.

    Article  Google Scholar 

  17. 17

    Morrison, S. and Keogh, J., Changes in the dynamics of tremor during goal-directed pointing, Hum. Mov. Sci., 2001, vol. 20, nos. 4–5, p. 675.

    CAS  Article  Google Scholar 

  18. 18

    Daneault, J.F., Carignan, B., and Duval, C., Bilateral effect of a unilateral voluntary modulation of physiological tremor, Clin. Neurophysiol., 2010, vol. 121, no. 5, p. 734.

    Article  Google Scholar 

  19. 19

    Feys, P., Helsen, W., Liu, X., et al., Effects of vision and arm position on amplitude of arm postural tremor in patients with multiple sclerosis, Arch. Phys. Med. R-ehabil., 2004, vol. 85, no. 6, p. 1031.

    Article  Google Scholar 

  20. 20

    Beuter, A., Haverkamp, H., Glass, L., and Carriere, L., Effect of manipulating visual feedback parameters on eye and finger movements, Int. J. Neurosci., 1995, vol. 83, nos. 3–4, p. 281.

    CAS  Article  Google Scholar 

  21. 21

    Rooks, M., Slappery, J., and Zusmanis, K., Precision of suture placement with microscope and loupe-assisted anastomoses, Microsurgery, 1993, vol. 14, no. 8, p. 547.

    CAS  Article  Google Scholar 

  22. 22

    Feys, P., Helsen, W., Buekers, M., et al., The effect of changed visual feedback on intention tremor in multiple sclerosis, Neurosci. Lett., 2006, vol. 394, no. 1, p. 17.

    CAS  Article  Google Scholar 

  23. 23

    Liu, X., Miall, C., Aziz, T.Z., et al., Analysis of action tremor and impaired control of movement velocity in multiple sclerosis during visually guided wrist-tracking tasks, Mov. Disord., 1997, vol. 12, no. 6, p. 992.

    CAS  Article  Google Scholar 

  24. 24

    Keogh, J., Morrison, S., and Barrett, R., Augmented visual feedback increases finger tremor during postural pointing, Exp. Brain. Res., 2004, vol. 159, no. 4, p. 467.

    CAS  Article  Google Scholar 

  25. 25

    Novikov, V.S. and Soroko, S.I., Fiziologicheskie osnovy zhiznedeyatel’nosti cheloveka v ekstremal’nykh usloviyakh (Physiological Principles of Human Activities in Extreme Conditions), St. Petersburg: Politekhnika-Print, 2017.

  26. 26

    Golyandina, N. and Zhigljavsky, A., Singular Spectrum Analysis for Time Series, Springer Briefs in Statistics, Berlin: Springer-Verlag, 2013.

  27. 27

    Manly, B.F.J., Randomization, Bootstrap and Monte Carlo Methods in Biology, London: Chapman and Hall, 2007, 3rd ed.

    Google Scholar 

  28. 28

    Gironell, A. and Ribosa-Nogue, J., Withdrawal of visual feedback in essential tremor, Parkinsonism Relat. Di-sord., 2012, vol. 18, no. 4, p. 402.

    CAS  Article  Google Scholar 

Download references


We are grateful to all participants of our experiments.

Author information



Corresponding author

Correspondence to K. O. Uplisova.

Ethics declarations

Conflict of interests. The authors declare that they have no real or potential conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures were performed in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments and were approved by the local Ethics Committee at St. Petersburg State University. All individual participants involved in the study voluntarily gave written informed consent for participation after being informed about potential risks and benefits and the study nature.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.Y., Uplisova, K.O. & Ivanova, V.Y. Biofeedback Specialization Effect on Physiological Tremor Amplitude Dynamics. Hum Physiol 46, 127–133 (2020).

Download citation


  • physiological tremor
  • biofeedback
  • singular spectrum analysis