Age-related Trends in Functional Organization of Cortical Parts of Regulatory Brain Systems in Adolescents: an Analysis of Resting-State Networks in the EEG Source Space

Abstract

Age-related trends in the strength of functional and effective connectivity between key cortical structures that belong to the three most important resting-state neural networks: the default mode network (DMN), the key event detection network (salience network, SN) and the central executive network (CEN) were investigated in adolescents of both sexes. The study involved 34 adolescents of the younger age group: 11–13 years old (12.61 ± 0.75 years, 13 girls and 21 boys) and 54 adolescents of the older group: 14–16 years old (15.00 ± 0.75 years, 20 girls and 34 boys). Frequency-specific estimates of the strength of functional and effective connectivity between the nodes of DMN, SN and CEN were computed in six frequency bands θ (4–7 Hz), α1 (7.5–9.5 Hz), α2 (10–13 Hz), β1 (14–18 Hz), β2 (20–27 Hz) and γ (30–40 Hz) using the vector autoregressive modeling of cortical sources of EEG registered in the resting condition. The analysis of functional connectivity revealed age differences in the θ frequency range, in which the strength of connections between the nodes of all networks in the younger age group was higher than in the older group. Besides, sex-related differences were found in the beta-2 and gamma ranges: the connections between the nodes of DMN were stronger for girls than for boys. The analysis of effective connectivity (directed influences) revealed a significant effect of age in all frequency ranges for the CEN and DMN resting-state networks; for SN, this effect was significant in all but the beta-2 and gamma ranges. The most pronounced age-related changes were found for bottom-up connections directed from more caudal to more frontal areas in CEN and DMN, and in the younger age group, the strength of effective connections was greater than in the older one. The effect of sex on the strength of effective connections was limited mainly to the younger group and manifested itself in stronger DMN and CEN connectivity in girls (as compared with boys) .

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Fiziologia razvitia rebenka (Physiology of Child Development), Bezrukikh, M.M. and Farber, D.A., Eds., Moscow: Mosk. Psyhol.-Pedagog. Instit., 2010.

    Google Scholar 

  2. 2

    Cauffman, E., Steinberg, L., and Piquero, A.R., Psychological, neuropsychological and physiological correlates of serious antisocial behavior in adolescence: the role of self-control, Criminology, 2005, vol. 43, no. 1, p. 133.

    Article  Google Scholar 

  3. 3

    Casey, B.J., Beyond simple models of self-control to circuit-based accounts of adolescent behavior, Annu. Rev. Psychol., 2015, vol. 66, p. 295.

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Sorocco, K.H., Carnes, N.C., Cohoon, A.J., et al., Risk factors for alcoholism in the Oklahoma Family Health Patterns project: impact of early life adversity and family history on affect regulation and personality, Drug Alcohol Depend., 2015, vol. 150, p. 38.

    PubMed  Article  Google Scholar 

  5. 5

    Machinskaya, R.I., Brain executive systems, Zh. Vyssh. Nerv. Deiat. Im. I. P. Pavlova, 2015, vol. 65, no. 1, p. 33.

    CAS  PubMed  Google Scholar 

  6. 6

    Lindquist, K.A., Wager, T.D., Kober, H., et al., The brain basis of emotion: a meta-analytic review, Behav. Brain Sci., 2012, vol. 35, no. 3, p. 121.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Salamone, J.D. and Correa, M., The mysterious motivational functions of mesolimbic dopamine, Neuron, 2012, vol. 76, no. 3, p. 470.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Salgado, S. and Kaplitt, M.G., The nucleus accumbens: a comprehensive review, Stereotact. Funct. Neurosurg., 2015, vol. 93, no. 2, p. 75.

    PubMed  Article  Google Scholar 

  9. 9

    Sharp, B.M., Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction, Transl. Psychiatry, 2017, vol. 7, no. 8, p. e1194.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Ishikawa, A., Ambroggi, F., Nicola, S.M., and Fields, H.L., Dorsomedial prefrontal cortex contribution to behavioral and nucleus accumbens neuronal responses to incentive cues, J. Neurosci., 2008, vol. 28, no. 19, p. 5088.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Rudebeck, P.H. and Murray, E.A., The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes, Neuron, 2014, vol. 84, no. 6, p. 1143.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Dixon, M.L., Thiruchselvam, R., Todd, R., and Christoff, K., Emotion and the prefrontal cortex: an integrative review, Psychol. Bull., 2017, vol. 143, no. 10, p. 1033.

    PubMed  Article  Google Scholar 

  13. 13

    Ahmed, S.P., Bittencourt-Hewitt, A., and Sebastian, C.L., Neurocognitive bases of emotion regulation development in adolescence, Dev. Cognit. Neurosci., 2015, vol. 15, p. 11.

    Article  Google Scholar 

  14. 14

    Bressler, S.L. and Menon, V., Large-scale brain networks in cognition: emerging methods and principles, Trends Cognit. Sci., 2010, vol. 14, no. 6, p. 277.

    Article  Google Scholar 

  15. 15

    Pessoa, L., Understanding emotion with brain networks, Curr. Opin. Behav. Sci., 2018, vol. 19, p. 19.

    PubMed  Article  Google Scholar 

  16. 16

    Bressler, S.L. and Tognoli, E., Operational principles of neurocognitive networks, Int. J. Psychophysiol., 2006, vol. 60, no. 2, p. 139.

    PubMed  Article  Google Scholar 

  17. 17

    Fox, M.D. and Raichle, M.E., Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging, Nat. Rev. Neurosci., 2007, vol. 8, no. 9, p. 700.

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Kurgansky, A.V., Human brain functional organization in the resting-state, Zh. Vyssh. Nerv. Deiat. Im. I. P. Pavlova, 2018, vol. 68, no. 5, p. 567.

    Google Scholar 

  19. 19

    Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., et al., Consistent resting-state networks across healthy subjects, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 37, p. 13848.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Mohan, A., Roberto, A.J., Mohan, A., et al., The significance of the Default Mode Network (DMN) in neurological and neuropsychiatric disorders: a review, Yale J. Biol. Med., 2016, vol. 89, no. 1, p. 49.

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Solé-Padullés, C., Castro-Fornieles, J., de la Serna, E., et al., Intrinsic connectivity networks from childhood to late adolescence: effects of age and sex, Dev. Cognit. Neurosci., 2016, vol. 17, no. 35.

  22. 22

    Zhou, Y., Friston, K.J., Zeidman, P., et al., The hierarchical organization of the default, dorsal attention and salience networks in adolescents and young adults, Cereb. Cortex, 2018, vol. 28, no. 2, p. 726.

    PubMed  Article  Google Scholar 

  23. 23

    Uhlhaas, P.J. and Singer, W., Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks, Neuron, 2012, vol. 75, no. 6, p. 963.

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Srinivasan, R., Winter, W.R., and Nunez, P.L., Source analysis of EEG oscillations using high-resolution EEG and MEG, Prog. Brain. Res., 2006, vol. 1, no. 59, p. 29.

    Article  Google Scholar 

  25. 25

    Grech, R., Cassar, T., Muscat, J., et al., Review on solving the inverse problem in EEG source analysis, J. Neuroeng. Rehabil., 2008, vol. 5, p. 25.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Darvas, F., Pantazis, D., Kucukaltun-Yildirim, E., and Leahy, R.M., Mapping human brain function with MEG and EEG: methods and validation, NeuroImage, 2004, vol. 23, suppl. 1, p. S289.

    PubMed  Article  Google Scholar 

  27. 27

    Baccala, L.A., Sameshima, K., Ballester, G., et al., Studying the interaction between brain structures via directed coherence and Granger causality, Appl. Signal. Process., 1998, vol. 5, p. 40.

    Article  Google Scholar 

  28. 28

    Kurgansky, A.V., Study of cortico-cortical functional connectivity with vector autoregressive model of multichannel EEG, Zh. Vyssh. Nerv. Deiat. Im. I. P. Pavlova, 2010, vol. 60, no. 6, p. 740.

    Google Scholar 

  29. 29

    Kaminski, M. and Blinowska, K.J., The influence of volume conduction on DTF estimate and the problem of its mitigation, Front. Comput. Neurosci., 2017, vol. 11, p. 36.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Davey, C.G., Pujol, J., and Harrison, B.J., Mapping the self in the brain’s default mode network, NeuroImage, 2016, vol. 132, p. 390.

    PubMed  Article  Google Scholar 

  31. 31

    Assaf, M., Jagannathan, K., Calhoun, V.D., et al., Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients, NeuroImage, 2010, vol. 53, no. 1, p. 247.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Dixon, M.L., De La Vega, A., Mills, C., et al., Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 7, p. E1598.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Hallez, H., Vanrumste, B., Grech, R., et al., Review on solving the forward problem in EEG source analysis, J. Neuroeng. Rehabil., 2007, vol. 4, p. 46.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Litvak, V., Mattout, J., Kiebel, S., et al., EEG and MEG data analysis in SPM8, Comput. Intell. Neurosci., 2011, vol. 2011, art. ID 852961.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Pascual-Marqui, R.D., Lehmann, D., Koukkou, M., et al., Assessing interactions in the brain with exact low-resolution electromagnetic tomography, Philos. Trans. R. Soc., A, 2011, vol. 369, no. 1952, p. 3768.

  36. 36

    Chen, A.C., Oathes, D.J., Chang, C., et al., Causal interactions between fronto-parietal central executive and default-mode networks in humans, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 49, p. 19944.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Cui, J., Xu, L., Bressler, S.L., et al., BSMART: A Matlab/C toolbox for analysis of multichannel neural time series, Neural Networks, 2008, vol. 21, no. 8, p. 1094.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Di, X. and Biswal, B.B., Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging, NeuroImage, 2014, vol. 86, p. 53.

    PubMed  Article  Google Scholar 

  39. 39

    Sharaev, M.G., Zavyalova, V.V., Ushakov, V.L., et al., Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data, Front. Hum. Neurosci., 2016, vol. 10, p. 14.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Sridharan, D., Levitin, D.J., and Menon, V., A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 34, p. 12569.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Friston, K., Causal modeling and brain connectivity in functional magnetic resonance imaging, PLoS Biol., 2009, vol. 7, no. 2, p. e33.

    PubMed  Article  CAS  Google Scholar 

  42. 42

    Lenroot, R.K. and Giedd, J.N., Brain development in children and adolescents: insights from anatomical magnetic resonance imaging, Neurosci. Biobehav. Rev., 2006, vol. 30, no. 6, p. 718.

    PubMed  Article  Google Scholar 

  43. 43

    Tsekhmistrenko, T.A., Vasilyeva, V.A., and Shumeiko, N.S., Structural rearrangements of the cerebral cortex in children and adolescents, Hum. Physiol., 2017, vol. 43, no. 2, p. 123.

    Article  Google Scholar 

  44. 44

    Uddin, L.Q., Supekar, K.S., Ryali, S., and Menon, V., Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development, J. Neurosci., 2011, vol. 31, no. 50, p. 18578.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Sherman, L.E., Rudie, J.D., Pfeifer, J.H., et al., Development of the default mode and central executive networks across early adolescence: a longitudinal study, Dev. Cognit. Neurosci., 2014, vol. 10, p. 148.

    Article  Google Scholar 

  46. 46

    Allen, E., Erhardt, E., Damaraju, E., et al., A baseline for the multivariate comparison of resting-state networks, Front. Syst. Neurosci., 2011, vol. 5, p. 2.

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Zhang, C., Cahill, N.D., Arbabshirani, M.R., et al., Sex and age effects of functional connectivity in early adulthood, Brain Connectivity, 2016, vol. 6, no. 9, p. 700.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Thatcher, R.W., North, D.M., and Biver, C.J., Development of cortical connections as measured by EEG coherence and phase delays, Hum. Brain Mapp., 2008, vol. 29, no. 12, p. 1400.

    PubMed  Article  Google Scholar 

  49. 49

    Spear, L.P., Adolescent neurodevelopment, J. Adolesc. Health, 2013, vol. 52, suppl. 2, p. S7.

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Squeglia, L.M., Jacobus, J., Sorg, S.F., et al., Early adolescent cortical thinning is related to better neuropsychological performance, J. Int. Neuropsychol. Soc., 2013, vol. 19, no. 9, p. 962.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Selemon, L.D., A role for synaptic plasticity in the adolescent development of executive function, Transl. Psychiatry, 2013, vol. 3, no. 3, p. e238.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Jung, M., Mody, M., Saito, D.N., et al., Sex differences in the default mode network with regard to autism spectrum traits: a resting-state fMRI study, PLoS One, 2015, vol. 10, no. 11, p. e0143126.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53

    Barth, C., Villringer, A., and Sacher, J., Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods, Front. Neurosci., 2015, vol. 9, p. 37.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Sinclair, D., Purves-Tyson, T.D., Allen, K.M., and Weickert, C.S., Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain, Psychopharmacology, 2014, vol. 231, no. 8, p. 1581.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. I. Machinskaya.

Ethics declarations

CONFLICT OF INTEREST

The authors declare the absence of any conflicts of interest, either actual or potential.

FUNDING

This work was supported by the Russian Foundation for Basic Research (Grant no. 17-06-00837-OGN).

ETHICAL STANDARDS

All studies were conducted in accordance with the principles of biomedical ethics, formulated in the Helsinki Declaration of 1964 and its subsequent updates, and approved by the local bioethical committee of the Institute of Developmental Physiology.

INFORMED CONSENT

Written informed consent was obtained from the parents of each participant for her/his participation in the study, signed after explaining the potential risks and benefits, as well as the nature of the upcoming study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machinskaya, R.I., Kurgansky, A.V. & Lomakin, D.I. Age-related Trends in Functional Organization of Cortical Parts of Regulatory Brain Systems in Adolescents: an Analysis of Resting-State Networks in the EEG Source Space. Hum Physiol 45, 461–473 (2019). https://doi.org/10.1134/S0362119719050098

Download citation

Keywords:

  • resting-state networks
  • adolescents
  • brain regulatory systems
  • EEG