Skip to main content
Log in

Neurofeedback in the Rehabilitation of Patients with Motor Disorders after Stroke

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Traditional rehabilitation procedures do not meet all the latest requirements of ecological validity and new challenges in public health in terms of their technical characteristics. The article discusses new methods of rehabilitation in clinical practice based on modern information technologies, in particular, neurofeedback. Since motor functions are of central significance for human life, an important innovation is the use of the brain–computer interface (BCI) technology in the rehabilitation of patients after stroke. Two major directions in BCI technology development in neurorehabilitation and the efficacy of mental training are discussed. The results of pilot experiments on voluntary movement restoration using a hand exoskeleton with priming are analyzed. The efficacy of motor imagery training with and without priming is compared in groups of patients with post-stroke hand paresis using exoskeleton and the noninvasive BCI technology. Our data did not support the empirical hypothesis that special regulatory priming would influence the effectiveness of practice on motor imagery (extension of the hand). Qualitative analysis showed that priming provided prior to a mentally performed motion increased the effectiveness of technology in the rehabilitation of patients and had a nonspecific effect on the possibility of mentally performing the movement. These findings contribute to the understanding of clinical and psychological mechanisms of the rehabilitation process based on computer technologies and can help to promote the mental training technology and improve its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Bayona, N.A., Bitensky, J., Salter, K., and Teasell, R., The role of task-specific training in rehabilitation therapies, Top. Stroke Rehabil., 2005, vol. 12, no. 3, p. 58.

    Article  PubMed  Google Scholar 

  2. Rickhag, M., Wieloch, T., Gidö, G., et al., Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue, J. Neurochem., 2005, vol. 96, no. 1, p. 14.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, K.P., Chan, C.C., Lee, T.M., and Hui-Chan, C.W., Mental imagery for promoting relearning for people after stroke: a randomized controlled trial, Arch. Phys. Med. Rehabil., 2004, vol. 85, no. 9, p. 1403.

    Article  PubMed  Google Scholar 

  4. Birbaumer, N., Ghanayim, N., Hinterberger, T., et al., A spelling device for the paralyzed, Nature, 1999, vol. 398, no. 6725, p. 297.

    Article  CAS  PubMed  Google Scholar 

  5. Kübler, A., Nijboer, F., Mellinger, J., et al., Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface, Neurology, 2005, vol. 64, no. 10, p. 1775.

    Article  PubMed  Google Scholar 

  6. Pfurtscheller, G. and Neuper, C., Future prospects of ERD/ERS in the context of brain–computer interface (BCI) developments, Prog. Brain Res., 2006, vol. 159, p. 433.

    Article  PubMed  Google Scholar 

  7. Pfurtscheller, G., Müller-Putz, G.R., Scherer, R., and Neuper, C., Rehabilitation with brain-computer interface systems, Computer, 2008, vol. 41, no. 10, p. 58.

    Article  Google Scholar 

  8. Hochberg, L.R., Serruya, M.D., Friehs, G.M., et al., Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature, 2006, vol. 442, p. 64.

    Article  CAS  Google Scholar 

  9. Wang, W., Collinger, J.L., Perez, M.A., et al., Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity, Phys. Med. Rehabil. Clin., 2010, vol. 21, no. 1, p. 157.

    Article  CAS  Google Scholar 

  10. Leeb, R., Tonin, L., Rohm, M., et al., Towards independence: a BCI telepresence robot for people with severe motor disabilities, Proc. IEEE, 2015, vol. 103, no. 6, p. 969.

    Article  Google Scholar 

  11. Zhang, Y., Zhou, G., Jin, J., et al., SSVEP recognition using common feature analysis in brain–computer interface, J. Neurosci. Methods, 2015, vol. 224, p. 8.

    Article  Google Scholar 

  12. Huster, R.J., Mokom, Z.N., Enriquez-Geppert, S., and Herrmann, C.S., Brain–computer interfaces for EEG neurofeedback: Peculiarities and solutions, Int. J. Psychophysiol., 2014, vol. 91, no. 1, p. 36.

    Article  PubMed  Google Scholar 

  13. Jovic, J., Escande, A., Ayusawa, K., et al., Humanoid and human inertia parameter identification using hierarchical optimization, IEEE Trans. Rob., 2016, vol. 32, no. 3, p. 726.

    Article  Google Scholar 

  14. He, J., McCarley, J.S., Crager, K., et al., Does wearable device bring distraction closer to drivers? Comparing smartphones and Google Glass, Appl. Ergon., 2018, vol. 70, p. 156.

    Article  PubMed  Google Scholar 

  15. Randolph, A.B., Moore Jackson, M.M., and Mason, S.G., Characterizing control of brain–computer interfaces with biogauges, in Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications, Allison, B.Z., Dunne, S., Leeb, R., Millán, J.D.R., and Nijholt, A., Eds., Heidelberg: Springer Verlag, 2012, p. 395.

    Google Scholar 

  16. Hammond, D.C., Neurofeedback treatment of depression and anxiety, J. Adult Dev., 2005, vol. 12, nos. 2–3, p. 131.

    Article  Google Scholar 

  17. Hammond, D.C., What is neurofeedback: an update, J. Neurother., 2011, vol. 15, no. 4, p. 305.

    Article  Google Scholar 

  18. Nelson, L.A., The role of biofeedback in stroke rehabilitation: past and future directions, Top. Stroke Rehabil., 2007, vol. 14, no. 4, p. 59.

    Article  PubMed  Google Scholar 

  19. Buch, E., Weber, C., Cohen, L.G., et al., Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke, Stroke, 2008, vol. 39, no. 3, p. 910.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kleim, J.A. and Jones, T.A., Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage, J. Speech, Lang., Hear. Res., 2008, vol. 51, p. 225.

    Article  Google Scholar 

  21. Daly, J.J., Cheng, R., Rogers, J., et al., Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke, J. Neurol. Phys. Ther., 2009, vol. 33, no. 4, p. 203.

    Article  PubMed  Google Scholar 

  22. Ang, K.K., Chua, K.S.G., Phua K.S., et al., A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke, Clin. EEG Neurosci., 2015, vol. 46, no. 4, p. 310.

    Article  PubMed  Google Scholar 

  23. Ang, K.K., Guan, C., Phua, K.S., et al., Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke, Front. Neuroeng., 2014, vol. 7, p. 30.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ramos-Murguialday, A., Broetz, D., Rea, M., et al., Brain-machine interface in chronic stroke rehabilitation: a controlled study, Ann. Neurol., 2013, vol. 74, no. 1, p. 100.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ono, T., Shindo, K., Kawashima, K., et al., Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke, Front. Neuroeng., 2014, vol. 7, p. 7.

    Article  Google Scholar 

  26. Frolov, A.A., Biryukova, E.V., Bobrov, P.D., et al., Efficiency of complex neurorehabilitation of patients with post-stroke hand paresis using the brain-computer + exoskeleton neurointerface, Al’m. Klin. Med., 2016, vol. 44, no. 3, p. 280.

    Article  Google Scholar 

  27. Mokienko, O.A., Chernikova, L.A., Frolov, A.A., and Bobrov, P.D., Motor imagery and its practical application, Neurosci. Behav. Physiol., 2014, vol. 44, no. 5, p. 483.

    Article  Google Scholar 

  28. Barclay-Goddard, R.E., Stevenson, T.J., Thalman, L., and Poluha, W., Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke, Stroke, 2011, vol. 42, no. 11, p. 574.

    Article  Google Scholar 

  29. Mokienko, O.A., Chervyakov, A.V., Kulikova, S.N., et al., Increased motor cortex excitability during motor imagery in brain–computer interface trained subjects, Front. Comput. Neurosci., 2013, vol. 7, p. 168.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pfurtscheller, G. and Lopes da Silva, F.H., Event-related EEG/MEG synchronization and desynchronization: basic principles, Clin. Neurophysiol., 1999, vol. 110, no. 11, p. 1842.

    Article  CAS  PubMed  Google Scholar 

  31. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., et al., Brain-computer interfaces for communication and control, Clin. Neurophysiol., 2002, vol. 113, no. 6, p. 767.

    Article  PubMed  Google Scholar 

  32. Bajaj, S., Butler, A.J., Drake, D., and Dhamala, M., Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation, NeuroImage, 2015, vol. 8, p. 572.

    Article  PubMed  Google Scholar 

  33. Shih, J.J., Krusienski, D.J., and Wolpaw, J.R., Brain–computer interfaces in medicine, Mayo Clin. Proc., 2012, vol. 87, no. 3, p. 268.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Frolov, A.A., Gusek, D., Bobrov, P.D., et al., Localization of brain electrical activity sources and hemodynamic activity foci during motor imagery, Hum. Physio-l., 2014, vol. 40, no. 3, p. 273.

    Article  Google Scholar 

  35. Page, S.J., Levine, P., and Leonard, A.C., Effects of mental practice on affected limb use and function in chronic stroke, Arch. Phys. Med. Rehabil., 2005, vol. 86, no. 3, p. 399.

    Article  PubMed  Google Scholar 

  36. Page, S.J., Levine, P., and Leonard, A.C., Mental practice in chronic stroke: results of a randomized, placebo-controlled trial, Stroke, 2007, vol. 38, no. 4, p. 1293.

    Article  PubMed  Google Scholar 

  37. Soekadar, S.R., Birbaumer, N., Slutzky, M.W., and Cohen, L.G., Brain–machine interfaces in neurorehabilitation of stroke, Neurobiol. Dis., 2015, vol. 83, p. 172.

    Article  PubMed  Google Scholar 

  38. Grosse-Wentrup, M., Mattia, D., and Oweiss, K., Using brain–computer interfaces to induce neural plasticity and restore function, J. Neural Eng., 2011, vol. 8, no. 2, p. 025004.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Steenbergen, B., Crajé, C., Nilsen, D.M., and Gordon, A.M., Motor imagery training in hemiplegic cerebral palsy: a potentially useful therapeutic tool for rehabilitation, Dev. Med. Child Neurol., 2009, vol. 51, no. 9, p. 690.

    Article  PubMed  Google Scholar 

  40. Sechenov, I.M., Reflexes of the brain: an attempt to introduce the physiological basis into the psychic, in Izbrann-ye proizvedeniya (Selected Works), Koshtoyants, Kh.S., Ed., Moscow: Akad. Nauk SSSR, 1952, vol. 1, p. 7.

  41. Pavlov, I.P., Lektsii o rabote bol’shikh polusharii golovnogo mozga (Lectures about the Activity of the Cerebral Hemispheres), Moscow: Akad. Nauk SSSR, 1949.

  42. Ukhtomskii, A.A., Izbrannye trudy (Selected Research Works), Leningrad: Nauka, 1978.

  43. Anokhin, P.K., Ocherki po fiziologii funktsional’nykh sistem (Essays on the Physiology of Functional Systems), Moscow: Meditsina, 1975.

  44. Biryukova, E.V., Pavlova, O.G., Kurganskaya, M.E., et al., Recovery of the motor function of the arm with the aid of a hand exoskeleton controlled by a brain–computer interface in a patient with an extensive brain lesion, Hum. Physiol., 2016, vol. 42, no. 1, p. 13.

    Article  Google Scholar 

  45. Meyer, D.E. and Schvaneveldt, R.W., Facilitation in recognizing pairs of words: evidence of a dependence between retrieval operations, J. Exp. Psychol., 1971, vol. 90, no. 2, p. 227.

    Article  CAS  PubMed  Google Scholar 

  46. Stone, M., Ladd, S.L., and Gabrieli, J.D., The role of selective attention in perceptual and affective priming, Am. J. Psychol., 2000, vol. 113, no. 3, p. 341.

    Article  CAS  PubMed  Google Scholar 

  47. Tulving, E., Kapur, S., Craik, F.I.M., et al., Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 6, p. 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leuthold, H. and Kopp, B., Mechanisms of priming by masked stimuli: Inferences from event-related brain potentials, Psychol. Sci., 1998, vol. 9, p. 263.

    Article  Google Scholar 

  49. Hermans, D., Spruyt, A., De Houwer, J., and Eelen, P., Affective priming with subliminally presented pictures, Can. J. Exp. Psychol., 2003, vol. 57, no. 2, p. 97.

    Article  PubMed  Google Scholar 

  50. Forget, J., Lippe, S., and Lassonde, M., Perceptual priming does not transfer interhemispherically in the acallosal brain, Exp. Brain Res., 2008, vol. 192, no. 3, p. 443.

    Article  PubMed  Google Scholar 

  51. Schmidt, F., Haberkamp, A., and Schmidt, T., Dos and don’ts in response priming research, Adv. Cognit. Psychol., 2011, vol. 7, no. 1, p. 120.

    Article  Google Scholar 

  52. Buccino, G., Arisi, D., Gough, P., et al., Improving upper limb motor functions through action observation treatment: a pilot study in children with cerebral palsy, Dev. Med. Child Neurol., 2012, vol. 54, no. 9, p. 822.

    Article  PubMed  Google Scholar 

  53. Schuster, C., Hilfiker, R., Amft, O., et al., Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines, BMC Med., 2011, vol. 9, p. 75.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Neurorehabilitation Department of the Research Center of Neurology for their collaboration in organizing and conducting the study and to Prof. L.A. Chernikova for support and inspiration.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 17-29-02169 “The Use of Modern Information Technologies (Virtual Reality, iTracking, Neurobiofeedback) for Clinico-Psychological Diagnosis and Rehabilitation of Subjects with Cognitive and Emotional Disorders”. The study was a part of the state research and development program of the Research Center of Neurology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kovyazina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interests related to the present publication.

Statement of compliance with standards of research involving humans as subjects. All procedures involving human participants were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments and was approved by the Ethical Committee of the Research Center of Neurology, resolution no. 1-6/16 from January 27, 2016. All participants signed a written informed consent form after being informed about the potential risks and advantages, as well as about the design of the study.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovyazina, M.S., Varako, N.A., Lyukmanov, R.K. et al. Neurofeedback in the Rehabilitation of Patients with Motor Disorders after Stroke. Hum Physiol 45, 444–451 (2019). https://doi.org/10.1134/S0362119719040042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119719040042

Keywords:

Navigation