Skip to main content
Log in

Involvement of the Brain Orexinergic System in Sleep–Wake Cycle Regulation

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The paper considers recent studies of brain orexinergic system in animals and humans. The considered neurotransmitter system is involved in the regulation of a wide spectrum of brain responses occurring in living organisms during wakefulness. This study reflects the current concept of the triggering role of orexins A and B in initiation of awakening and cites scientific opinions of a number of leading researchers on the studied problem. Orexin-containing neurons located in the hypothalamus play one of the top roles in the regulation of brain aminergic systems during active wakefulness. The summary of scientific data accumulated in the past ten years makes it possible to sufficiently extend the existing concepts of the sleep–wake cycle regulation mechanisms. The progress in revealing relationships and events in the brain that are necessary for normal sleep–wake changeover forms the basis for developing new methods for correction of disorders of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. de Lecea, L., Kilduff, T.S., Peyron, C., et al., The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 1, p. 322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sakurai, T., Amemiya, A., Ishii, M., et al., Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior, Cell, 1998, vol. 92, no. 4, p. 573.

    Article  CAS  PubMed  Google Scholar 

  3. Adamantidis, A. and de Lecea, L., Physiological arousal: a role for hypothalamic systems, Cell. Mol. Life Sci., 2008, vol. 65, no. 10, p. 1475.

    Article  CAS  PubMed  Google Scholar 

  4. Mignot, E., Taheri, S., and Nishino, S., Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders, Nat. Neurosci., 2002, vol. 5, p. 1071.

    Article  CAS  PubMed  Google Scholar 

  5. Thannickal, T.C., Moore, R.Y., Nienhuis, R., et al., Reduced number of hypocretin neurons in human narcolepsy, Neuron, 2000, vol. 27, no. 3, p. 469.

    Article  CAS  PubMed  Google Scholar 

  6. Mahoney, C.E., Agostinelli, L.J., Brooks, J.N., et al., GABAergic neurons of the central amygdala promote cataplexy, J. Neurosci., 2017, vol. 37, no. 15, p. 3995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weber, F., Hoang Do, J.P., Chung, S., et al., Regulation of REM and non-REM sleep by periaqueductal GABAergic neurons, Nat. Commun., 2018, vol. 9, no. 1, p. 354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Swick, T.J., Treatment paradigms for cataplexy in narcolepsy: past, present, and future, Nat. Sci. Sleep, 2015, vol. 7, p. 159.

    PubMed  PubMed Central  Google Scholar 

  9. Kohlmeier, K.A., Watanabe, S., Tyler, C.J., et al., Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons: noisy cation current activation and selective enhancement of Ca2+ transients mediated by L-type calcium channels, J. Neurophysiol., 2008, vol. 100, no. 4, p. 2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bayer, L., Eggermann, E., Serafin, M., et al., Orexins (hypocretins) directly excite tuberomammillary neurons, Eur. J. Neurosci., 2001, vol. 14, p. 1571.

    Article  CAS  PubMed  Google Scholar 

  11. Brown, R.E., Sergeeva, O.A., Eriksson, K.S., and Haas, H.L., Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline), J. Neurosci., 2002, vol. 22, no. 20, p. 8850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, R.J., van den Pol, A.N., and Aghajanian, G.K., Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions, J. Neurosci., 2002, vol. 22, no. 21, p. 9453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korotkova, T.M., Sergeeva, O.A., Eriksson, K.S., et al., Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins, J. Neurosci., 2003, vol. 23, no. 1, p. 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown, R.E., Winston, S., Basheer, R., et al., Electrophysiological characterization of neurons in the dorsolateral pontine rapid-eye-movement sleep induction zone of the rat: intrinsic membrane properties and responses to carbachol and orexins, Neuroscience, 2006, vol. 143, no. 3, p. 739.

    Article  CAS  PubMed  Google Scholar 

  15. Govindaiah, G. and Cox, C.L., Modulation of thalamic neuron excitability by orexins, Neuropharmacology, 2006, vol. 51, no. 3, p. 414.

    Article  CAS  PubMed  Google Scholar 

  16. Lambe, E.K. and Aghajanian, G.K., Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice, Neuron, 2003, vol. 40, no. 1, p. 139.

    Article  CAS  PubMed  Google Scholar 

  17. Bayer, L., Serafin, M., Eggermann, E., et al., Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons, J. Neurosci., 2004, vol. 24, no. 30, p. 6760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. España, R.A., Baldo, B.A., Kelley, A.E., and Berridge, C.W., Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action, Neuroscience, 2001, vol. 106, no. 4, p. 699.

    Article  PubMed  Google Scholar 

  19. Thakkar, M.M., Ramesh, V., Strecker, R.E., and McCarley, R.W., Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats, Arch. Ital. Biol., 2001, vol. 139, no. 3, p. 313.

    CAS  PubMed  Google Scholar 

  20. Huang, Z.L., Qu, W.M., Li, W.D., et al., Arousal effect of orexin A depends on activation of the histaminergic system, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 17, p. 9965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xi, M.C., Morales, F.R., and Chase, M.H., Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat, Brain Res., 2001, vol. 901, p. 259.

    Article  CAS  PubMed  Google Scholar 

  22. Watson, C.J., Soto-Calderon, H., Lydic, R., and Baghdoyan, H.A., Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness, Sleep, 2008, vol. 31, no. 4, p. 453.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yamuy, J., Fung, S.J., Xi, M., and Chase, M.H., Hypocretinergic control of spinal cord motoneurons, J. Neurosci., 2004, vol. 24, no. 23, p. 5336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trivedi, P., Yu, H., MacNeil, D.J., et al., Distribution of orexin receptor mRNA in the rat brain, FEBS Lett., 1998, vol. 438, nos. 1–2, p. 71.

    Article  CAS  PubMed  Google Scholar 

  25. Bourgin, P., Huitrón-Reséndiz, S., Spier, A.D., et al., Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons, J. Neurosci., 2000, vol. 20, no. 20, p. 7760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. España, R.A., Baldo, B.A., Kelley, A.E., and Berridge, C.W., Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action, Neuroscience, 2001, vol. 106, no. 4, p. 699.

    Article  PubMed  Google Scholar 

  27. Hagan, J.J., Leslie, R.A., Patel, S., et al., Orexin A activates locus coeruleus cell firing and increases arousal in the rat, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 19, p. 10911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, Z.L., Qu, W.M., Li, W.D., et al., Arousal effect of orexin A depends on activation of the histaminergic system, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 17, p. 9965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Methippara, M.M., Alam, M.N., Szymusiak, R., and McGinty, D., Effects of lateral preoptic area application of orexin-A on sleep-wakefulness, Neuroreport, 2000, vol. 11, no. 16, p. 3423.

    Article  CAS  PubMed  Google Scholar 

  30. Piper, D.C., Upton, N., Smith, M.I., and Hunter, A.J., The novel brain neuropeptide, orexin-A, modulates the sleep-wake cycle of rats, Eur. J. Neurosci., 2000, vol. 12, no. 2, p. 726.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshida, Y., Fujiki, N., Nakajima, T., et al., Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities, Eur. J. Neurosci., 2001, vol. 14, no. 7, p. 1075.

    Article  CAS  PubMed  Google Scholar 

  32. Deboer, T., Overeem, S., Visser, N.A., et al., Convergence of circadian and sleep regulatory mechanisms on hypocretin-1, Neuroscience, 2004, vol. 129, no. 3, p. 727.

    Article  CAS  PubMed  Google Scholar 

  33. Sakurai, T., Nagata, R., Yamanaka, A., et al., Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice, Neuron, 2005, vol. 46, no. 2, p. 297.

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida, K., McCormack, S., España, R.A., et al., Afferents to the orexin neurons of the rat brain, J. Comp. Neurol., 2006, vol. 494, no. 5, p. 845.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Leak, R.K. and Moore, R.Y., Topographic organization of suprachiasmatic nucleus projection neurons, J. Comp. Neurol., 2001, vol. 433, no. 3, p. 312.

    Article  CAS  PubMed  Google Scholar 

  36. Chou, T.C., Scammell, T.E., Gooley, J.J., et al., Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms, J. Neurosci., 2003, vol. 19, no. 23, p. 10691.

    Article  Google Scholar 

  37. Mieda, M., Williams, S.C., Sinton, C.M., et al., Orexin neurons function in an efferent pathway of a food-entrainable circadianoscillator in eliciting food-anticipatory activity and wakefulness, J. Neurosci., 2004, vol. 24, no. 46, p. 10493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chemelli, R.M., Willie, J.T., Sinton, C.M., et al., Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation, Cell, 1999, vol. 98, no. 4, p. 437.

    Article  CAS  PubMed  Google Scholar 

  39. Estabrooke, I.V., McCarthy, M.T., Ko, E., et al., Fos expression in orexin neurons varies with behavioral state, J. Neurosci., 2001, vol. 21, no. 5, p. 1656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scammell, T.E., Estabrooke, I.V., McCarthy, M.T., et al., Hypothalamic arousal regions are activated during modafinil-induced wakefulness, J. Neurosci., 2000, vol. 20, no. 22, p. 8620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adamantidis, A. and de Lecea, L., The hypocretins as sensors for metabolism and arousal, J. Physiol., 2009, vol. 587, no. 1, p. 33.

    Article  CAS  PubMed  Google Scholar 

  42. Mieda, M., The roles of orexins in sleep/wake regulation, Neurosci Res., 2017, vol. 118, p. 56.

    Article  CAS  PubMed  Google Scholar 

  43. Goforth, P.B. and Myers, M.G., Roles for orexin/hypocretin in the control of energy balance and metabolism, Curr. Top. Behav. Neurosci., 2017, vol. 33, p. 137.

    Article  CAS  PubMed  Google Scholar 

  44. Rani, M., Kumar, R., and Krishan, P., Role of orexins in the central and peripheral regulation of glucose homeostasis: evidences and mechanisms, Neuropeptides, 2018, vol. 68, p. 1.

    Article  CAS  PubMed  Google Scholar 

  45. Gao, X.B. and Horvath, T., Function and dysfunction of hypocretin/orexin: anenergetics point of view, Annu. Rev. Neurosci., 2014, vol. 37, p. 101.

    Article  CAS  PubMed  Google Scholar 

  46. Diano, S., Horvath, B., Urbanski, H.F., et al., Fasting activates the nonhuman primate hypocretin (orexin) system and its postsynaptic targets, Endocrinology, 2003, vol. 144, no. 9, p. 3774.

    Article  CAS  PubMed  Google Scholar 

  47. Futatsuki, T., Yamashita, A., Ikbar, K.N., et al., Involvement of orexin neurons in fasting- and central adenosine-induced hypothermia, Sci. Rep., 2018, vol. 8, no. 1, p. 2717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsujino, N., Yamanaka, A., Ichiki, K., et al., Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor, J. Neurosci., 2005, vol. 25, no. 32, p. 7459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsunematsu, T., Fu, L.Y., Yamanaka, A., et al., Vasopressin increases locomotion through a V1a receptor in orexin/hypocretin neurons: implications for water homeostasis, J. Neurosci., 2008, vol. 28, no. 1, p. 228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Williams, R.H., Jensen, L.T., Verkhratsky, A., et al., Control of hypothalamic orexin neurons by acid and CO2, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 25, p. 10685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morina, I.Yu., Aristakesyan, E.A., Kuzik, V.V., Oganesyan, G.A., and Alekseeva, O.S., On the influence of prenatal hypoxia on formation of the orexinergic system and sleep–wake cycle in early ontogenesis of rats, J. Evol. Biochem. Physiol., 2016, vol. 52, no. 3, p. 238.

    Article  CAS  Google Scholar 

  52. Nakamura, A., Zhang, W., Yanagisawa, M., et al., Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice, J. Appl. Physiol., 2007, vol. 102, no. 1, p. 241.

    Article  CAS  PubMed  Google Scholar 

  53. Kernder, A., De Luca, R., Yanovsky, Y., et al., Acid-sensing hypothalamic neurons controlling arousal, Cell. Mol. Neurobiol., 2014, vol. 34, no. 6, p. 777.

    Article  CAS  PubMed  Google Scholar 

  54. Dergacheva, O. and Mendelowitz, D., Combined hypoxia and hypercapnia, but not hypoxia alone, suppresses neurotransmission from orexin to hypothalamic paraventricular spinally-projecting neurons in weanling rats, Brain Res., 2018, vol. 1679, p. 33.

    Article  CAS  PubMed  Google Scholar 

  55. Yoshida, K., McCormack, S., España, R.A., et al., Afferents to the orexin neurons of the rat brain, J. Comp. Neurol., 2005, vol. 494, no. 5, p. 845.

    Article  Google Scholar 

  56. Kodani, S., Soya, S., and Sakurai, T., Excitation of GABAergic neurons in the bed nucleus of the stria terminalis triggers immediate transition from non-rapid eye movement sleep to wakefulness in mice, J. Neurosci., 2017, vol. 37, no. 30, p. 7164.-

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shainidze, K.Z., Perekrest, S.V., Novikova, N.S., et al., Stimulation of orexinergic system in the CNS and in immune organs by various forms of stress, Adv. Neuroimmune Biol., 2012, vol. 3, nos. 3–4, p. 255.

    Google Scholar 

  58. Carrive, P., Orexin, stress and central cardiovascular control. A link with hypertension? Neurosci. Biobehav. Rev., 2017, vol. 74, p. 376.

    Article  CAS  PubMed  Google Scholar 

  59. Tung, L.W., Lu, G.L., Lee, Y.H., et al., Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons, Nat. Commun., 2016, vol. 7, p. 12199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuwaki, T. and Zhang, W., Orexin neurons and emotional stress, Vitam. Horm. (London), 2012, vol. 89, p. 135.

    Article  CAS  Google Scholar 

  61. Gao, X.B., Plasticity in neurons synthesizing wake/arousal promoting hormone hypocretin/orexin, Vitam. Horm. (London), 2012, vol. 89, p. 35.

    Article  CAS  Google Scholar 

  62. Perekrest, S.V., Shainidze, K.Z., Loskutov, Yu.V., et al., Immunoreactivity of orexin-containing neurons in the hypothalamus and the level of expression of the preproorexin gene in these cells after administration of lipopolysaccharide, Neurosci. Behav. Physiol., 2013, vol. 43, no. 2, p. 256.

    Article  CAS  Google Scholar 

  63. Novikova, N.S., Perekrest, S.V., Shainidze, K.Z., et al., LPS-induced gene expression changes receptor types I and II (and OxR1 OxR2) in cells of the central nervous system, Med. Akad. Zh., 2014, vol. 14, no. 4, p. 73.

    Google Scholar 

  64. Becskei, C., Riediger, T., Hernadfalvy, N., et al., Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake, Brain Behav. Immun., 2008, vol. 22, no. 1, p. 56.

    Article  CAS  PubMed  Google Scholar 

  65. Gaykema, R.P. and Goehler, L.E., Lipopolysaccharide challenge-induced suppression of Fos in hypothalamic orexin neurons: their potential role in sickness behavior, Brain Behav. Immun., 2009, vol. 23, no. 7, p. 926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grossberg, A.J., Zhu, X., Leinninger, G.M., et al., Inflammation-induced lethargy is mediated by suppression of orexin neuron activity, J. Neurosci., 2011, vol. 31, no. 31, p. 11376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deutschman, C.S., Raj, N.R., McGuire, E.O., and Kelz, M.B., Orexinergic activity modulates altered vital signs and pituitary hormone secretion in experimental sepsis, Crit. Care Med., 2013, vol. 41, no. 11, p. 368.

    Article  CAS  Google Scholar 

  68. Ogawa, Y., Irukayama-Tomobe, Y., Murakoshi, N., et al., Peripherally administered orexin improves survival of mice with endotoxin shock, eLife, 2016, vol. 5, p. 21055.

    Article  Google Scholar 

  69. Xiong, X., White, R.E., Xu, L., et al., Mitigation of murine focal cerebral ischemia by the hypocretin/orexinsystem is associated with reduced inflammation, Stroke, 2013, vol. 44, no. 3, p. 764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, H., Acuna-Goycolea, C., Li, Y., Cheng, H.M., Obrietan, K., and van den Pol, A.N., Cannabinoids excite hypothalamic melanin-concentrating hormone but inhibit hypocretin/orexin neurons: implications for cannabinoid actions on food intake and cognitive arousal, J. Neurosci., 2007, vol. 27, no. 18, p. 4870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arias-Carrión, O., Caraza-Santiago, X., Salgado-Licona, S., et al., Orquestic regulation of neurotransmitters on reward-seeking behavior, Int. Arch. Med., 2014, vol. 7, p. 29.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Harris, G.C. and Aston-Jones, G., Arousal and reward: a dichotomy in orexin function, Trends Neurosci., 2006, vol. 29, no. 10, p. 571.

    Article  CAS  PubMed  Google Scholar 

  73. García, M.C., López, M., Gualillo, O., et al., Hypothalamic levels of NPY, MCH, and prepro-orexin mRNA during pregnancy and lactation in the rat: role of prolactin, FASEB J., 2003, vol. 17, no. 11, p. 1392.

    Article  CAS  PubMed  Google Scholar 

  74. Yang, L., Zou, B., Xiong, X., et al., Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice, J. Neurosci., 2013, vol. 33, no. 12, p. 5275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Belin, D. and Everitt, B.J., Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum, Neuron, 2008, vol. 57, no. 3, p. 432.

    Article  CAS  PubMed  Google Scholar 

  76. Baimel, C., Bartlett, S.E., Chiou, L.C., et al., Orexin/hypocretin role in reward: implications for opioid and other addictions, J. Pharmacol., 2015, vol. 172, no. 2, p. 334.

    CAS  Google Scholar 

  77. Shabanov, P.D., Lebedev, A.A., Morozov, A.I., and Roik, R.O., Effects of intraventricular injection of orexin and its antagonist on the supporting properties of psychoactive substances, Obz. Klin. Farmakol. Lekarstvennoi Ter., 2015, vol. 13, no. 4, p. 29.

    Article  Google Scholar 

  78. Steiner, N., Rossetti, C., Sakurai, T., et al., Hypocretin/orexin deficiency decreases cocaine abuseliability, Neuropharmacology, 2018, vol. 1, no. 133, p. 395.

    Article  CAS  Google Scholar 

  79. Lei, K., Wegner, S.A., Yu, J.-H., and Hopf, F.W., Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice, Neuropharmacology, 2016, vol. 110, p. 431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Horvath, T.L. and Gao, X.B., Input organization and plasticity of hypocretin neurons: possible clues to obesity’s association with insomnia, Cell Metab., 2005, vol. 1, no. 4, p. 279.

    Article  CAS  PubMed  Google Scholar 

  81. Xie, X., Crowder, T.L., Yamanaka, A., et al., GABA(B) receptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus, J. Physiol., 2006, vol. 574, no. 2, p. 399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Niu, J.G., Yokota, S., Tsumori, T., et al., Glutamatergic lateral parabrachial neurons innervate orexin-containing hypothalamic neurons in the rat, Brain Res., 2010, vol. 1358, p. 110.

    Article  CAS  PubMed  Google Scholar 

  83. Rao, Y., Liu, Z.W., Borok, E., et al., Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons, J. Clin. Invest., 2007, vol. 117, no. 12, p. 4022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. O’Brien, R., Xu, D., Petralia, R., et al., Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp, Neuron, 1999, vol. 23, no. 2, p. 309.

    Article  PubMed  Google Scholar 

  85. Sil’kis, I.G., Possible mechanisms for impairments to learning, memory, and attention due to sleep deprivation, Neurosci. Behav. Physiol., 2014, vol. 44, no. 5, p. 576.

    Article  Google Scholar 

  86. Reti, I.M., Reddy, R., Worley, P.F., and Baraban, J.M., Selective expression of Narp, a secreted neuronal pentraxin, in orexin neurons, J. Neurochem., 2002, vol. 82, no. 6, p. 1561.

    Article  CAS  PubMed  Google Scholar 

  87. Tsui, C.C., Copeland, N.G., Gilbert, D.J., et al., Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity, J. Neurosci., 1996, vol. 16, no. 8, p. 2463.

    Article  CAS  PubMed  Google Scholar 

  88. Xia, J., Chen, F., Ye J., et al., Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons, Neuroscience, 2009, vol. 162, no. 4, p. 980.

    Article  CAS  PubMed  Google Scholar 

  89. Laperchia, C., Imperatore, R., Azeez, I.A., et al., The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization, Brain Struct. Funct., 2017, vol. 222, no. 8, p. 3847.

    Article  CAS  PubMed  Google Scholar 

  90. Sakurai, T., The role of orexin in motivated behaviors, Nat. Rev. Neurosci., 2014, vol. 15, no. 11, p. 719.

    Article  CAS  PubMed  Google Scholar 

  91. Elbaz, I., Foulkes, N.S., Gothilf, Y., and Appelbaum, L., Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish, Front. Neural Circ., 2013, vol. 7, p. 9.

    Google Scholar 

  92. Passani, M.B., Giannoni, P., Bucherelli, C., et al., Histamine in the brain: Beyond sleep and memory, Biochem. Pharmacol., 2007, vol. 73, no. 8, p. 1113.

    Article  CAS  PubMed  Google Scholar 

  93. Koval’zon, V.M., The role of histaminergic system of the brain in the regulation of sleep-wakefulness cycle, Hum. Physiol., 2013, vol. 39, no. 6, p. 574.

    Article  Google Scholar 

Download references

Funding

The study was carried out in the context of scientific research no. 0557-2019-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Gavrilov.

Ethics declarations

The authors declare no manifest or potential conflicts of interests related to the publication of this paper. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. M. Khaitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, Y.V., Derevtsova, K.Z. & Korneva, Y.A. Involvement of the Brain Orexinergic System in Sleep–Wake Cycle Regulation. Hum Physiol 45, 426–434 (2019). https://doi.org/10.1134/S0362119719030058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119719030058

Keywords:

Navigation