Skip to main content
Log in

Specifics of Microcirculation under the Conditions of “Dry” Immersion

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Peripheral hemodynamics was studied in the upper extremities of human subjects during a 5-day exposure in microgravity modeled by “dry” immersion (DI). The object of investigation was skin adjacent to the nail bed of the fourth finger and forearm skin. Microcirculation was measured using laser Doppler flowmetry (LDF) and computer capillaroscopy (CCS). In addition, peripheral hemodynamics was assessed in subjects donned in a Penguin axial-loading suit (PLS). The subjects were divided into two groups: with (G-2) and without (G-1) PLS. The results are the following: PLS leveled down all changes in the microcirculatory bloodstream (MCB) of the upper extremities. By the end of DI, some subjects in G-1 were found to have a more intensive tissue perfusion and increased number of capillaries, and exaggerated activity of passive mechanism of blood flow modulation Ас (one-way ANOVA, p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gazenko, O.G., Shulzhenko, E.B., Turchaninova, V.F., et al., Central and regional hemodynamics in space flights, Acta Astronaut., 1988, vol. 17, no. 2, pp. 173–179.

    Article  PubMed  CAS  Google Scholar 

  2. Fomina, G.A., Kotovskaya, A.R., Pochuev, V.I., and Zhernavkov, A.F., Mechanisms of changes in human hemodynamics under the conditions of microgravity and prognosis of postflight orthostatic stability, Hum. Physiol., 2008, vol. 34, no. 3, pp. 343–347.

    Article  Google Scholar 

  3. Fomina, G.A., Kotovskaya, A.R., and Temnova, E.V., Dynamics of the human cardiovascular responses in different periods of long-term exposure in weightlessness, Aviakosm. Ekol. Med., 2009, vol. 43, no. 3, pp. 11–16.

    CAS  Google Scholar 

  4. Zhu, H., Wang, H.Q., and Liu, Z.Q., Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: a review, Int. J. Occup. Med. Environ. Health, 2015, vol. 28, no. 5, pp. 793–802.

    Article  PubMed  Google Scholar 

  5. Hughson, R.L., Shoemaker, J.K., Blaber, A.P., et al., Cardiovascular regulation during long-duration spaceflights to the International Space Station, J. Appl. Physiol., 2012, vol. 112, no. 5, pp. 719–727.

    Article  PubMed  CAS  Google Scholar 

  6. Schrage, W.G., Woodman, C.R., and Laughlin, M.H., Hindlimb unweighting alters endothelium-dependent vasodilation and ecNOS expression in soleus arterioles, J. Appl. Physiol., 2000, vol. 89, no. 4, pp. 1483–1490.

    Article  PubMed  CAS  Google Scholar 

  7. Stout, M.S., Watenpaugh, D.E., Breit, G.A., et al., Simulated microgravity increases cutaneous blood flow in the head and leg of humans, Aviat. Space Environ. Med., 1995, vol. 66, no. 9, pp. 872–875.

    PubMed  CAS  Google Scholar 

  8. Kvandal, P., Landsverk, S.A., Bernjak, A., et al., Low-frequency oscillations of the laser Doppler perfusion signal in human skin, Microvasc. Res., 2006, vol. 72, no. 3, pp. 120–127.

    Article  PubMed  Google Scholar 

  9. Kvernmo, H.D., Stefanovska, A., Bracic, M., et al., Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise, Microvasc. Res., 1998, vol. 56, no. 3, pp. 173–182.

    Article  PubMed  CAS  Google Scholar 

  10. Fedorovich, A.A., Rodnenkov, O.V., Ageeva, N.V., et al., Microcirculatory blood flow parameters in human skin under conditions of prolonged heat stress (model experiment), Kardiol. Vestn., 2013, vol. 8, no. 1, pp. 7–17.

    Google Scholar 

  11. Fedorovich, A.A., Non-invasive evaluation of vaso-motor and metabolic functions of microvascular endothelium in human skin, Microvasc. Res., 2012, vol. 84, no. 1, pp. 86–93.

    Article  PubMed  CAS  Google Scholar 

  12. Shul’zhenko, E.B. and Vil-Vil’yams, I.F., The possible long-term water immersion performed by dry immersion method, Kosm. Biol. Aviakosm. Med., 1976, vol. 10, pp. 82–84.

    PubMed  Google Scholar 

  13. Navasiolava, N.M., Custaud, M.-A., Tomilovskaya, E.S., et al., Long-term dry immersion: review and prospects, Eur. J. of Appl. Phycol., 2011, vol. 111, no. 7, pp. 1235–1260.

    Article  CAS  Google Scholar 

  14. Figueiras, E., Campos, R., Semedo, S., et al., A new laser Doppler flowmeter prototype for depth dependent monitoring of skin microcirculation, Rev. Sci. Instrum., 2012, vol. 83, no. 3, pp. 10.

    Article  CAS  Google Scholar 

  15. Smits, G.J., Roman, R.J., and Lombard, J.H., Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow, J. Appl. Physiol., 1986, vol. 61, no. 2, pp. 666–672.

    Article  PubMed  CAS  Google Scholar 

  16. Nosovskii, A.M., Development of multidimensional scaling for biomedical research, Aviakosm. Ekol. Med., 2002, vol. 36, no. 3, pp. 62–66.

    CAS  Google Scholar 

  17. Navasiolava, N.M., Dignat-George, F., Sabatier, F., et al., Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers, Am. J. Physiol. Heart Circ. Physiol., 2010, vol. 299, no. 2, pp. H248–H256.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, L.-F., Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment, Eur. J. Appl. Physiol., 2013, vol. 113, no. 12, pp. 2873–2895.

    Article  PubMed  Google Scholar 

  19. Noskov, V.B., Nichiporuk, I.A., Vasil’eva, G.Yu., and Smirnov, Yu.I., Human body composition during extended stay in microgravity, Aviakosm. Ekol. Med., 2015, vol. 49, no. 1, pp. 19–25.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 14-25-00167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Pamova.

Additional information

Translated by E. Sherstyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvorov, A.V., Pamova, A.P. & Fedorovich, A.A. Specifics of Microcirculation under the Conditions of “Dry” Immersion. Hum Physiol 44, 794–798 (2018). https://doi.org/10.1134/S0362119718070162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119718070162

Keywords:

Navigation