Skip to main content
Log in

Multipotent Mesenchymal Stromal Cells and Extracellular Matrix: Regulation under Hypoxia

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Over the past 20 years a significant data have been accumulated indicating that the extracellular matrix (ECM) is not just an inert substrate. The ECM acts as a multifunctional dynamic compartment that regulates the functions of various cell systems, including niches of stem and progenitor cells. The ECM is a complex network of macromolecules with different physical and biochemical properties. ECM production, deposition, and degradation play an important role in both physiological and reparative tissue remodeling. ECM biology is therefore of considerable interest for elucidating the mechanisms that govern various tissue niches in vivo and producing ECMs ex vivo for tissue engineering and regenerative medicine. The review summarizes current knowledge about the role that an important microenvironmental factor—tissue oxygen level (“physiological” hypoxia) plays in the biology of the ECM of stromal lineage cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Schofield, R., The relationship between the spleen colony-forming cell and the haemopoietic stem cell, Blood Cells, 1978, vol. 4, nos. 1–2, p. 7.

    CAS  PubMed  Google Scholar 

  2. Watt, F.M. and Huck, W.T., Role of the extracellular matrix in regulating stem cell fate, Nat. Rev. Mol. Cell. Biol., 2013, vol. 14, p. 467.

    Article  CAS  PubMed  Google Scholar 

  3. Lane, S.W., Williams, D.A., and Watt, F.M., Modulating the stem cell niche for tissue regeneration, Nat. Biotechnol., 2014, vol. 32, p. 795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rojas-Ríos, P. and González-Reyes, A., Concise review: The plasticity of stem cell niches: a general property behind tissue homeostasis and repair, Stem Cells, 2014, vol. 32, no. 4, p. 852.

    Article  PubMed  Google Scholar 

  5. Gattazzo, F., Urciuolo, A., and Bonaldo, P., Extracellular matrix: a dynamic microenvironment for stem cell niche, Biochim. Biophys. Acta, 2014, vol. 1840, p. 2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watt, F.M. and Hogan, B.L., Out of Eden: stem cells and their niches, Science, 2000, vol. 287, no. 5457, p. 1427.

    Article  CAS  PubMed  Google Scholar 

  7. Kolf, C.M., Cho, E., and Tuan, R.S., Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation, Arthritis Res. Ther., 2007, vol. 9, no. 1, p. 204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hynes, R.O., The extracellular matrix: not just pretty fibrils, Science, 2009, vol. 326, no. 5957, p. 1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naba, A., Clauser, K.R., Ding, H., et al., The extracellular matrix: tools and insights for the “omics” era, Matrix Biol., 2016, vol. 49, p. 10.

    Article  CAS  PubMed  Google Scholar 

  10. Rhodes, J.M. and Simons, M., The extracellular matrix and blood vessel formation: not just a scaffold, J. Cell Mol. Med., 2007, vol. 11, p. 176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yue, B., Biology of the extracellular matrix: an overview, Glaucoma, 2014, vol. 23, no. 8, p. 20.

    Article  Google Scholar 

  12. Ragelle, H., Naba, A., Larson, B.L., et al., Comprehensive proteomic characterization of stem cell-derived extracellular matrices, Biomaterials, 2017, vol. 128, p. 147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Canty, E.G. and Kadler, K.E., Procollagen trafficking, processing and fibrillogenesis, J. Cell Sci., 2005, vol. 118, no. 2005, p. 1341.

  14. Kadler, K.E., Baldock, C., Bella, J., and Boot-Handford, R.P., Collagens at a glance, J. Cell Sci., 2007, vol. 120, p. 1955.

    Article  CAS  PubMed  Google Scholar 

  15. Ricard-Blum, S., The collagen family, Cold Spring Harbor Perspect. Biol., 2011, vol. 3, no. 1, p. a004978.

    Article  Google Scholar 

  16. Lu, P., Takai, K., Weaver, V.M., and Werb, Z., Extracellular matrix degradation and remodeling in development and disease, Cold Spring Harbor Perspect. Biol., 2011, vol. 3, no. 12, p. a005058.

    Article  Google Scholar 

  17. Apte, S.S. and Parks, W.C., Metalloproteinases: a parade of functions in matrix biology and an outlook for the future, Matrix Biol., 2015, vol. 44–46, p. 1.

    Article  CAS  PubMed  Google Scholar 

  18. Bonnans, C., Chou, J., and Werb, Z., Remodeling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, p. 786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Popa, S.J., Stewart, S.E., and Moreau, K., Unconventional secretion of annexins and galectins, Semin. Cell Dev. Biol., 2018, vol. 9521, no. 17, p. 30582.

    Google Scholar 

  20. Karin, N., The multiple faces of CXCL12 (SDF-1α) in the regulation of immunity during health and disease, J. Leukocyte Biol., 2010, vol. 88, p. 463.

    Article  CAS  PubMed  Google Scholar 

  21. Donato, R., Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type, Biochim. Biophys. Acta, 1999, vol. 1450, p. 191.

    Article  CAS  PubMed  Google Scholar 

  22. Gelse, K., Poschl, E., and Aigner, T., Collagens-structure, function, and biosynthesis, Adv. Drug. Delivery Rev., 2003, vol. 55, p. 1531.

    Article  CAS  Google Scholar 

  23. Heng, B.C., Cao, T., Stanton, L.W., et al., Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro, J. Bone Miner. Res., 2004, vol. 19, no. 9, p. 1379.

    Article  CAS  PubMed  Google Scholar 

  24. Lama, J. and Seguraa, T., The modulation of MSC integrin expression by RGD presentation, Biomaterials, 2013, vol. 34, no. 16, p. 3938.

    Article  CAS  Google Scholar 

  25. Samsonraj, R.M., Raghunath, M., Nurcombe, V., et al., Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine, Stem Cells Transl. Med., 2017, vol. 6, no. 12, p. 2173.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Salasznyk, R.M., Williams, W.A., Boskey, A., et al., Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells, J. Biomed. Biotechnol., 2004, vol. 2004, no. 1, p. 24.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mizuno, M., Fujisawa, R., and Kuboki, Y., Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction, J. Cell Physiol., 2000, vol. 184, no. 2, p. 207.

    Article  CAS  PubMed  Google Scholar 

  28. Park, Y.B., Seo, S., Kim, J.A., et al., Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells, Biomed. Mater., 2015, vol. 10, no. 3, p. 035014.

    Article  CAS  PubMed  Google Scholar 

  29. Humphrey, J.D., Eric, R. Dufresne, E.R., and Martin, A.S., Mechanotransduction and extracellular matrix homeostasis, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, no. 12, p. 802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, B., Moshfegh, P., Lin, Z., et al., Mesenchymal stem cells exploit extracellular matrix as mechanotransducer, Sci. Rep., 2013, vol. 3, p. 2425.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Qian, L. and Saltzman, W.M., Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification, Biomaterials, 2004, vol. 25, p. 1331.

    Article  CAS  PubMed  Google Scholar 

  32. Matsubara, T., Tsutsumi, S., Pan, H., et al., A new technique to expand human mesenchymal stem cells using basement membrane extracellular matrix, Biochem. Biophys. Res. Commun., 2004, vol. 313, p. 503.

    Article  CAS  PubMed  Google Scholar 

  33. Mao, Y., Hoffman, T., Wu, A., et al., Cell type-specific extracellular matrix guided the differentiation of human mesenchymal stem cells in 3D polymeric scaffold, J. Mater. Sci. Mater. Med., 2017, vol. 28, no. 7, p. 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hashimoto, J., Kariya, Y., and Miyazaki, K., Regulation of proliferation and chondrogenic differentiation of human mesenchymal stem cells by laminin-5 (laminin-332), Stem Cells, 2006, vol. 24, p. 2346.

    Article  CAS  PubMed  Google Scholar 

  35. Kular, J.K., Basu, S., and Sharma, R.I., The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering, J. Tissue Eng., 2014, vol. 5, p. 2041731414557112.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Qu, F., Li, Q., Wang, X., et al., Maturation state and matrix microstructure regulate interstitial cell migration in dense connective tissues, Sci. Rep., 2018, vol. 8, no. 1, p. 3295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brauer, P.R., MMPs—role in cardiovascular development and disease, Front. Biosci., 2006, vol. 11, p. 447.

    Article  CAS  PubMed  Google Scholar 

  38. Vu, T.H. and Werb, Z., Matrix metalloproteinases: effectors of development and normal physiology, Genes Dev., 2000, vol. 14, p. 2123.

    Article  CAS  PubMed  Google Scholar 

  39. Nam, H.S., Kwon, I., Lee, B.H., et al., Effects of mesenchymal stem cell treatment on the expression of matrix metalloproteinases and angiogenesis during ischemic stroke recovery, PloS One, 2015, vol. 10, p. e0144218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang, F., Ma, J., Liang, Y., et al., Amniotic mesenchymal stem cells can enhance angiogenic capacity via MMPs in vitro and in vivo, Biomed. Res. Int., 2015, vol. 2015, p. 324014.

    PubMed  PubMed Central  Google Scholar 

  41. Almalki, S.G. and Agrawal, D.K., Effects of matrix metalloproteinases on the fate of mesenchymal stem cells, Stem Cell Res. Ther., 2016, vol. 7, no. 1, p. 129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kasper, G., Glaeser, J.D., Geissler, S., et al., Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior, Stem Cells, 2007, vol. 25, p. 1985.

    Article  CAS  PubMed  Google Scholar 

  43. Higgins, D.F., Kimura, K., Bernhardt, W.M., et al., Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition, J. Clin. Invest., 2007, vol. 117, p. 3810.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Halberg, N., Khan, T., Trujillo, M. E., et al., Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue, Mol. Cell. Biol., 2009, vol. 29, p. 4467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moon, J.O., Welch, T.P., Gonzalez, F.J., and Copple, B.L., Reduced liver fibrosis in hypoxia-inducible factor-1α-deficient mice, Am. J. Physiol. Gastrointest. Liver Physiol., 2009, vol. 296, p. 582.

    Article  CAS  Google Scholar 

  46. Berg, J.T., Breen, E.C., Fu, Z., et al., Alveolar hypoxia increases gene expression of extracellular matrix proteins and platelet-derived growth factor-B in lung parenchyma, Am. J. Respir. Crit. Care Med., 1998, vol. 158, p. 1920.

    Article  CAS  PubMed  Google Scholar 

  47. Roth, K.J. and Copple, B.L., Role of hypoxia-inducible factors in the development of liver fibrosis, Cell Mol. Gastroenterol. Hepatol., 2015, vol. 1, no. 6, p. 589.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gillies, R.J. and Gatenby, R.A., Hypoxia and adaptive landscapes in the evolution of carcinogenesis, Cancer Metastasis Rev., 2007, vol. 26, p. 311.

    Article  CAS  PubMed  Google Scholar 

  49. Kalluri, R., The biology and function of fibroblasts in cancer, Nat. Rev. Cancer, 2016, vol. 16, p. 582.

    Article  CAS  PubMed  Google Scholar 

  50. Conklin, M.W., Eickhoff, J.C., Riching, K.M., et al., Aligned collagen is a prognostic signature for survival in human breast carcinoma, Am. J. Pathol., 2011, vol. 178, p. 1221.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gilkes, B.M., Semenza, G.L., and Wirtz, D., Hypoxia and the extracellular matrix: drivers of tumour metastasis, Nat. Rev. Cancer, 2014, vol. 14, no. 6, p. 430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buravkova, L.B., Andreeva, E.R., Gogvadze, V., and Zhivotovsky, B., Mesenchymal stem cells and hypoxia: Where are we? Mitochondrion, 2014, vol. 19, p. 1567.

    Article  CAS  Google Scholar 

  53. Riis, S., Stensballe, A., Emmersen, J., et al., Mass spectrometry analysis of adipose-derived stem cells reveals a significant effect of hypoxia on pathways regulating extracellular matrix, Stem Cell Res. Ther., 2016, vol. 7, p. 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ejtehadifar, M., Shamsasenjan, K., Movassagh-pour, A., et al., The effect of hypoxia on mesenchymal stem cell biology, Adv. Pharm. Bull., 2015, vol. 5, no. 2, p. 141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Volkmer, E., Kallukalam, B.C., Maertz, J., et al., Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation, Tissue Eng., Part A, 2010, vol. 16, no. 1, p. 153.

    Article  CAS  Google Scholar 

  56. Yang, D.C., Yang, M.H., Tsai, C.C., et al., Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST, PloS One, 2011, vol. 6, no. 9, p. 23965.

    Article  CAS  Google Scholar 

  57. Fehrer, C., Brunauer, R., Laschober, G., et al., Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan, Aging Cell, 2007, vol. 6, no. 6, p. 745.

    Article  CAS  PubMed  Google Scholar 

  58. Dos Santos, F., Andrade, P.Z., Boura, J.S., et al., Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia, J. Cell Physiol., 2010, vol. 223, no. 1, p. 27.

    CAS  PubMed  Google Scholar 

  59. Yang, S., Pilgaard, L., Chase, L.G., et al., Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells, Tissue Eng., Part C, 2012, vol. 18, no. 8, p. 593.

    Article  CAS  Google Scholar 

  60. Tamama, K., Kawasaki, H., Kerpedjieva, S.S., et al., Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition, J. Cell Biochem., 2011, vol. 112, no. 3, p. 804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, P., Ha, N., Dai, Q., et al., Hypoxia suppresses osteogenesis of bone mesenchymal stem cells via the extracellular signal-regulated 1/2 and p38-mitogen activated protein kinase signaling pathways, Mol. Med. Rep., 2017, vol. 16, no. 4, p. 5515.

    Article  CAS  PubMed  Google Scholar 

  62. Salim, A., Nacamuli, R.P., Morgan, E.F., et al., Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts, J. Biol. Chem., 2004, vol. 279, no. 38, p. 40007.

    Article  CAS  PubMed  Google Scholar 

  63. Khan, W.S., Adesida, A.B., Tew, S.R., et al., Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions, J. Orthop. Res., 2010, vol. 28, no. 6, p. 834.

    CAS  PubMed  Google Scholar 

  64. Merceron, C., Vinatier, C., Portron, S., et al., Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells, Am. J. Physiol. Cell Physiol., 2010, vol. 298, no. 2, p. 355.

    Article  CAS  Google Scholar 

  65. Shang, J., Liu, H., Li, J., and Zhou, Y., Roles of hypoxia during the chondrogenic differentiation of mesenchymal stem cells, Curr. Stem Cell Res. Ther., 2014, vol. 9, no. 2, p. 141.

    Article  CAS  PubMed  Google Scholar 

  66. Taheem, D.K., Foyt, D.A., Loaiza, S., et al., Differential regulation of human bone marrow mesenchymal stromal cell chondrogenesis by hypoxia inducible factor-1α hydroxylase inhibitors, Stem Cells, 2018. doi 10.1002/stem.2844

  67. Kumar, P., Satyam, A., Cigognini, D., et al., Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture, J. Tissue Eng. Regener. Med., 2018, vol. 12, no. 1, p. 6.

    Article  CAS  Google Scholar 

  68. Falanga, V., Martin, T.A., Tekasi, H., et al., Low oxygen tension increases mRNA levels of α1 (I) procollagen in human dermal fibroblasts, J. Cell Physiol., 1993, vol. 157, p. 408.

    Article  CAS  PubMed  Google Scholar 

  69. Tamamori, M., Ito, H., Hiroe, M., et al., Stimulation of collagen synthesis in rat cardiac fibroblasts by exposure to hypoxic culture conditions and suppression of the effect by natriuretic peptides, Cell Biol. Int., 1997, vol. 21, p. 175.

    Article  CAS  PubMed  Google Scholar 

  70. Norman, J.T., Clark, I.M., and Garcia, P.L., Hypoxia promotes fibrogenesis in human renal fibroblasts, Kidney Int., 2000, vol. 58, p. 2351.

    Article  CAS  PubMed  Google Scholar 

  71. Yin, L.X., Motz, K.M., Samad, I., et al., Fibroblasts in hypoxic conditions mimic laryngotracheal stenosis, Otolaryngol. Head Neck Surg., 2017, vol. 156, no. 5, p. 886.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Laitala, A. and Erler, J.T., Hypoxic signaling in tumor stroma, Front. Oncol., 2018, vol. 8, p. 189.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Koyasu, S., Kobayashi, M., Goto, Y., et al., Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge, Cancer Sci., 2018, vol. 109, no. 3, p. 560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aro, E., Khatri, R., Gerard-O’Riley, R., et al., Hypoxia-inducible factor-1 (HIF-1) but not HIF-2 is essential for hypoxic induction of collagen prolyl 4-hydroxylases in primary newborn mouse epiphyseal growth plate chondrocytes, J. Biol. Chem., 2012, vol. 287, p. 37134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G., and Amelio, I., The hypoxic tumor microenvironment, Oncogenesis, 2018, vol. 7, no. 1, p. 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tiwari, A., Lefevre, C., Kirkland, M.A., et al., Comparative gene expression profiling of stromal cell matrices that support expansion of hematopoietic stem/progenitor cells, Stem Cell Res. Ther., 2013, vol. 3, p. 152.

    Google Scholar 

  77. Ries, C., Egea, V., Karow, M., et al., MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines, Blood, 2007, vol. 109, p. 4055.

    Article  CAS  PubMed  Google Scholar 

  78. Lee, J. H., Yoon, Y.M., and Lee, S.H., Hypoxic preconditioning promotes the bioactivities of mesenchymal stem cells via the HIF-1α-GRP78-Akt axis, Int. J. Mol. Sci., 2017, vol. 18, no. 6, p. 1320.

    Article  CAS  PubMed Central  Google Scholar 

  79. Lund, A.W., Stegemann, J.P., and Plopper, G.E., Inhibition of ERK promotes collagen gel compaction and fibrillogenesis to amplify the osteogenesis of human mesenchymal stem cells in three-dimensional collagen I culture, Stem Cells Dev., 2009, vol. 18, p. 331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Udartseva, O.O., Lobanova, M.V., Andreeva, E.R., et al., Acute hypoxic stress affects migration machinery of tissue O2-adapted adipose stromal cells, Stem Cells Int., 2016, vol. 2016, p. 7260562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schodel, J., Grampp, S., Maher, E.R., et al., Hypoxia, hypoxia-inducible transcription factors, and renal cancer, Eur. Urol., 2016, vol. 69, no. 4, p. 646.

    Article  CAS  PubMed  Google Scholar 

  82. Rakian, R., Block, T.J., Johnson, S.M., et al., Native extracellular matrix preserves mesenchymal stem cell “stemness” and differentiation potential under serum-free culture conditions, Stem Cell Res. Ther., 2015, vol. 6, p. 235.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marinkovic, M., Block, T.J., Rakian, R., et al., One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior, Matrix Biol., 2016, vols. 52–54, p. 426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Andreeva.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, E.R., Matveeva, D.K. Multipotent Mesenchymal Stromal Cells and Extracellular Matrix: Regulation under Hypoxia. Hum Physiol 44, 696–705 (2018). https://doi.org/10.1134/S0362119718060038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119718060038

Keywords:

Navigation