Zueva, M.V., Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world, Front. Aging Neurosci., 2015, vol. 7, p. 135.
PubMed
PubMed Central
Article
Google Scholar
Skrebitskii, V.G. and Shtark, M.B., The fundaments of neuronal plasticity, Vestn. Ross. Akad. Med. Nauk, 2012, no. 9, p. 39.
Article
Google Scholar
Butz, M., Wörgötter, F., and van Ooyen, A., Activitydependent structural plasticity, Brain Res. Rev., 2009, vol. 60, p. 287.
PubMed
Article
Google Scholar
Pascual-Leone, A., Freitas, C., Oberman, L., et al., Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI, Brain Topogr., 2011, vol. 24, p. 302.
PubMed
PubMed Central
Article
Google Scholar
Wainwright, S.R. and Galea, L.A.M., The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus, Neural Plast., 2013, 805497.
Google Scholar
Katz, L.C. and Shatz, C.J., Synaptic activity and the construction of cortical circuits, Science, 1996, vol. 274, p. 1133.
PubMed
Article
CAS
Google Scholar
Buonomano, D.V. and Merzenich, M.M., Cortical plasticity: from synapses to maps, Ann. Rev. Neurosci., 1998, vol. 21, p. 149.
PubMed
Article
CAS
Google Scholar
Carcea, I. and Froemke, R.C., Cortical plasticity, excitatory-inhibitory balance, and sensory perception, Progr. Brain Res., 2013, vol. 207, p. 65.
Article
Google Scholar
Hubel, D.H. and Wiesel, T.N., The period of susceptibility to the physiological effects of unilateral eye closure in kittens, J. Physiol., 1970, vol. 206, p. 419.
PubMed
PubMed Central
Article
CAS
Google Scholar
Hensch, T., Critical period plasticity in local cortical circuitries, Nat. Rev. Neurosci., 2005, vol. 6, p. 877.
PubMed
Article
CAS
Google Scholar
Merabet, L.B. and Pascual-Leone, A., Neural reorganization following sensory loss: the opportunity of change, Nat. Rev. Neurosci., 2010, vol. 11, p. 44.
PubMed
Article
CAS
Google Scholar
Bengoetxea, H., Ortuzar, N., Bulnes, S., et al., Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain, Neural Plast., 2012, vol. 2012, p. 305693.
PubMed
PubMed Central
Article
Google Scholar
Stein, B.E., Stanford, T.R., and Rowland, D.A., Development of multisensory integration from the perspective of the individual neuron, Nat. Rev. Neurosci., 2014, vol. 15, p. 520.
PubMed
PubMed Central
Article
CAS
Google Scholar
Gilbert, C.D. and Li, W., Adult visual cortical plasticity, Neuron, 2012, vol. 75, no. 2, p. 250.
PubMed
PubMed Central
Article
CAS
Google Scholar
Hensch, T.K. and Fagiolini, M., Excitatory-inhibitory balance and critical period plasticity in developing visual cortex, Progr. Brain Res., 2005, vol. 147, p. 115.
Article
CAS
Google Scholar
Nudo, R.J., Neural bases of recovery after brain injury, J. Commun. Disord., 2011, vol. 44, no. 5, p. 515.
PubMed
PubMed Central
Article
Google Scholar
Castellanos, N.P., Paúl, N., Ordóñez, V.E., et al., Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury, Brain, 2010, vol. 133, p. 2365.
PubMed
Article
Google Scholar
Lewis, D.A. and González-Burgos, G., Neuroplasticity of neocortical circuits in schizophrenia, Neuropsychopharmacology, 2008, vol. 33, no. 1, p. 141.
PubMed
Article
Google Scholar
Zhuang, X., Mazzoni, P., and Kang, U.J., The role of neuroplasticity in dopaminergic therapy for Parkinson disease, Nat. Rev. Neurol., 2013, vol. 9, p. 248.
PubMed
Article
CAS
Google Scholar
van Praag, H., Shubert, T., Zhao, C., and Gage, F.H., Exercise enhances learning and hippocampal neurogenesis in aged mice, J. Neurosci., 2005, vol. 25, no. 38, p. 8680.
PubMed
PubMed Central
Article
CAS
Google Scholar
Nithianantharajah, J. and Hannan, A.J., The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders, Progr. Neurobiol., 2009, vol. 89, p. 369.
Article
Google Scholar
Mahncke, H.W., Connor, B.B., Appelman, J., et al., Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 33, p. 12523.
PubMed
PubMed Central
Article
CAS
Google Scholar
Smith, G.E., Housen, P., Yaffe, K., et al., A cognitive training program based on principles of brain plasticity: results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study, J. Am. Geriatr. Soc., 2009, vol. 57, p. 594.
PubMed
PubMed Central
Article
Google Scholar
Foster, P.P., Rosenblatt, K.P., and Kuljiš, R.O., Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer’s disease, Front. Neurol., 2011, vol. 2, p. 28.
PubMed
PubMed Central
Article
CAS
Google Scholar
Merzenich, M., Soft-Wired: How the New Science of Brain Plasticity Can Change Your Life, San Francisco: Parnassus, 2013, 2nd ed.
Google Scholar
Alwis, D.S. and Rajan, R., Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury, Front. Syst. Neurosci., 2014, vol. 8, p. 156.
PubMed
PubMed Central
Article
Google Scholar
Shors, T.J., Olson, R.L., Bates, M.E., Selby, E.A., and Alderman, B.L., Mental and physical (MAP) training: a neurogenesis-inspired intervention that enhances health in humans, Neurobiol. Learn. Mem., 2014, vol. 115, p. 3.
PubMed
PubMed Central
Article
Google Scholar
van Praag, H., Kempermann, G., and Gage, F.H., Neural consequences of environmental enrichment, Nat. Rev. Neurosci., 2000, vol. 1, p. 191.
PubMed
Article
CAS
Google Scholar
Mora, F., Segovia, G., and del Arco, A., Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain, Brain Res. Rev., 2007, vol. 55, no. 1, p. 78.
PubMed
Article
CAS
Google Scholar
Maya-Vetencourt, J.F., Tiraboschi, E., Spolidoro, M., et al., Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats, Eur. J. Neurosci., 2011, vol. 33, no. 1, p. 49.
PubMed
Article
Google Scholar
Baroncelli, L., Braschi, C., Spolidoro, M., et al., Nurturing brain plasticity: impact of environmental enrichment, Cell Death Diff., 2010, vol. 17, p. 1092.
Article
CAS
Google Scholar
Baroncelli, L., Bonaccorsi, J., Milanese, M., et al., Enriched experience and recovery from amblyopia in adult rats: impact of motor, social and sensory components, Neuropharmacology, 2012, vol. 62, p. 2388.
PubMed
Article
CAS
Google Scholar
Serruyaa, M.D. and Kahana, M.J., Techniques and devices to restore cognition, Behav. Brain Res., 2008, vol. 192, vol. 2, p. 149.
Article
Google Scholar
Green, C.S. and Bavelier, D., Action-video-game experience alters the spatial resolution of vision, Psychol. Sci., 2007, vol. 18, no. 1, p. 88.
PubMed
Article
CAS
Google Scholar
Dockx, K., Bekkers, E.M.J., van den Bergh, V., et al., Virtual reality for rehabilitation in Parkinson’s disease, Cochrane Database Syst. Rev., 2016, vol. 12, art. ID CD010760.
Mandelbrot, B., The Fractal Geometry of Nature, New York: Macmillan, 1983.
Google Scholar
West, G.B., Brown, J.H., and Enquist, B.J., The fourth dimension of life: fractal geometry and allometric scaling of organisms, Science, 1999, vol. 284, p. 1677.
PubMed
Article
CAS
Google Scholar
Iannaccone, P.M. and Khokha, M.K., Fractal Geometry in Biological Systems: An Analytical Approach, Boca Raton, FL: CRC Press, 1996.
Google Scholar
Taylor, R.P., Spehar, B., Donkelaar, P.V., and Hagerhall, C.M., Perceptual and physiological responses to Jackson Pollock’s fractals, Front. Hum. Neurosci., 2011, vol. 5, p. 60.
PubMed
PubMed Central
Article
Google Scholar
Zueva, M.V., Nonlinear fractals: applications in physiology and ophthalmology, Ophthalmology, 2014, vol. 11, no. 1, p. 4. http://www.ophthalmojournal. com/opht/article/viewFile/29/175.
Google Scholar
Simonian, G.S. and Simonian, A.G., Fractality of biological systems. III. Fractality of organs and organisms, Int. J. Appl. Fundam. Res., Biol. Sci., 2016, vol. 30, p. 272.
Google Scholar
Sejdic, E. and Lipsitz, L.A., Necessity of noise in physiology and medicine, Comput. Methods Progr. Biomed., 2013, vol. 111, no. 2, p. 459.
Article
Google Scholar
Halley, J.M., Ecology, evolution and 1/f–noise, Trends Ecol. Evol., 1996, vol. 11, no. 1, p. 33.
PubMed
Article
CAS
Google Scholar
Storch, D., Gaston, K.J., and Cepák, J., Pink landscapes: 1/f spectra of spatial environmental variability and bird community composition, Proc. R. Soc. London, Ser. B, 2002, vol. 269, p. 1791.
Article
Google Scholar
Vasseur, D.A. and Yodzis, P., The color of environmental noise, Ecology, 2004, vol. 85, no. 4, p. 1146.
Article
Google Scholar
Halley, J.M. and Inchausti, P., The increasing importance of 1/f noise as models of ecological variability, Fluctuation Noise Lett., 2004, vol. 4, no. 2, pp. R1–R26.
Article
Google Scholar
Dey, S., Proulx, S.R., and Teotónio, H., Adaptation to temporally fluctuating environments by the evolution of maternal effects, PLoS Biol., 2016, vol. 14, no. 2, p. e1002388.
PubMed
PubMed Central
Article
CAS
Google Scholar
Anishchenko, V.S., Dynamic systems, Soros. Obraz. Zh., 1997, no. 11, p. 77.
Google Scholar
Goldberger, A.L., Amaral, L.A.N., Hausdor, L.M., et al., Fractal dynamics in physiology: Alterations with disease and aging, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, p. 2466.
PubMed
PubMed Central
Article
Google Scholar
Tan, C.O., Cohen, M.A., Eckberg, D.L., and Taylor, J.A., Fractal properties of human heart period variability: physiological and methodological implications, J. Physiol., 2009, vol. 1, p. 3929.
Article
CAS
Google Scholar
Manor, B. and Lipsitz, L.A., Physiologic complexity and aging: implications for physical function and rehabilitation, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2013, vol. 45, p. 287.
Article
Google Scholar
Peng, C.K., Mietus, J.E., Liu, Y., et al., Quantifying fractal dynamics of human respiration: age and gender effects, Ann. Biomed. Eng., 2002, vol. 30, p. 683.
PubMed
Article
CAS
Google Scholar
Goldberger, A.L., Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease, Perspect. Biol. Med., 1997, vol. 40, p. 543. doi 10.1353/pbm.1997.0063
PubMed
Article
CAS
Google Scholar
Hausdorff, J.M., Peng, C.K., Ladin, Z., et al., Is walking a random walk? Evidence for long-range correlations in stride interval of human gait, J. Appl. Physiol., 1995, vol. 78, p. 349.
PubMed
Article
CAS
Google Scholar
Lipsitz, L.A. and Goldberger, A.L., Loss of “complexity” and aging, J. Am. Med. Assoc., 1992, vol. 267, no. 13, p. 1806.
Article
CAS
Google Scholar
Hu, K., van Someren, E.J., Shea, S.A., and Scheer, F.A., Reduction of scale invariance of activity fluctuations with aging and Alzheimer’s disease: involvement of the circadian pacemaker, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, p. 2490.
PubMed
PubMed Central
Article
Google Scholar
Balasubramanian, K. and Nagaraj, N., Aging and cardiovascular complexity: effect of the length of RRtachograms, PeerJ, 2016, vol. 4, p. e2755.
PubMed
PubMed Central
Article
Google Scholar
Geula, C., Abnormalities of neural circuitry in Alzheimer’s disease: hippocampus and cortical cholinergic innervation, Neurology, 1998, vol. 51, suppl. 1, p. S18.
PubMed
Article
CAS
Google Scholar
Li, Y., Tong, S., Liu, D., et al., Abnormal EEG complexity in patients with schizophrenia and depression, Clin. Neurophysiol., 2008, vol. 119, no. 6, p. 1232.
PubMed
Article
Google Scholar
Wei, X., Day, A.G., Ouelette-Kuntz, H., and Hevland, D.K., The association between nutritional adequacy and long-term outcomes in critically ill patients requiring prolonged mechanical ventilation: a multicenter cohort study, Crit. Care Med., 2015, vol. 43, no. 8, p. 1569. doi 10.1097/CCM. 0000000000001000
PubMed
Article
Google Scholar
Zhang, Y., Wang, C., Sun, C., et al., Neural complexity in patients with poststroke depression: a resting EEG study, J. Affective Disord., 2015, vol. 188, p. 310.
Article
Google Scholar
Liu, X., Zhang, C., Ji, Z., et al., Multiple characteristics analysis of Alzheimer’s electroencephalogram by power spectral density and Lempel–Ziv complexity, Cognit. Neurodyn., 2016, vol. 10, no. 2, p. 121.
Article
Google Scholar
Yuvaraj, R. and Murugappan, M., Hemispheric asymmetry non-linear analysis of EEG during emotional responses from idiopathic Parkinson’s disease patients, Cognit. Neurodyn., 2016, vol. 10, no. 3, p. 225.
Article
CAS
Google Scholar
Jeong, J., EEG dynamics in patients with Alzheimer’s disease, Clin. Neurophysiol., 2004, vol. 115, no. 7, p. 1490.
PubMed
Article
Google Scholar
Dauwels, J., Srinivasan, K., Reddy, M.R., et al., Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? Int. J. Alzheimer’s Dis., 2011, vol. 2011, art ID539621.
Vecchio, F., Babiloni, C., Lizio, R., et al., Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG markers for clinical applications: a review, Suppl. Clin. Neurophysiol., 2013, vol. 62, p. 223.
PubMed
Article
Google Scholar
Babiloni, C., Lizio, R., Marzano, N., et al., Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms, Int. J. Psychophysiol., 2016, vol. 103, p. 882.
Article
Google Scholar
Kitzbichler, M.G., Smith, M.L., Christensen, S.R., and Bullmore, E., Broadband criticality of human brain network synchronization, PLoS Comput. Biol., 2009, vol. 5, no. 3, p. e1000314.
PubMed
PubMed Central
Article
CAS
Google Scholar
Bak, P., Tang, C., and Wiesenfeld, K., Self-organized criticality: an explanation of the 1/f noise, Phys. Rev. Lett., 1987, vol. 59, no. 4, p. 381.
PubMed
Article
CAS
Google Scholar
Bilder, R.M. and Knudsen, K.S., Creative cognition and systems biology on the edge of chaos, Front. Psychol., 2014, vol. 5, p. 1104.
PubMed
PubMed Central
Article
Google Scholar
Timme, N.M., Marshall, N.J., Bennett, N., et al., Criticality maximizes complexity in neural tissue, Front. Psychol., 2016, vol. 7, p. 425.
Google Scholar
Stam, C.J., Nonlinear dynamical analysis of EEG and MEG: review of an emerging field, Clin. Neurophysiol., 2005, vol. 116, no. 10, p. 2266.
PubMed
Article
CAS
Google Scholar
Srinivasan, R., Bibi, F.A., and Nunez, P.L., Steadystate visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency, Brain Topogr., 2006, vol. 18, no. 3, p. 167.
PubMed
PubMed Central
Article
Google Scholar
Huang, T.L. and Charyton, C., A comprehensive review of the psychological effects of brainwave entrainment, Alt. Ther. Health Med., 2008, vol. 14, no. 5, p. 38.
Google Scholar
Hmel, F.C. and Cohen, L.G., Drivers of brain plasticity, Curr. Opin. Neurol., 2005, vol., 18, p. 667. doi 10.1097/01.wco.0000189876.37475.42
Article
Google Scholar
Cheng, W., Law, P.K., Kwan, H.C., and Cheng, R.S., Stimulation therapies and the relevance of fractal dynamics to the treatment of diseases, Open J. Regener. Med., 2014, vol. 3, p. 73.
Article
Google Scholar
Antal, A. and Herrmann, C.S., Transcranial alternating current and random noise stimulation: possible mechanisms, Neural Plast., 2016, vol. 2016, art. ID 3616807.
Söderlund, G.B., Björk, C., and Gustafsson, P., Comparing auditory noise treatment with stimulant medication on cognitive task performance in children with attention deficit hyperactivity disorder: results from a pilot study, Front. Psychol., 2016, vol. 7, p. 1331.
PubMed
PubMed Central
Google Scholar
Zaehle, T., Rach, S., and Herrmann, C.S., Transcranial alternating current stimulation enhances individual alpha activity in human EEG, PLoS One, 2010, vol. 5, p. e13766.
PubMed
PubMed Central
Article
CAS
Google Scholar
Thut, G., Veniero, D., Romei, V., et al., Rhythmic TMS causes local entrainment of natural oscillatory signatures, Curr. Biol., 2011, vol. 21, p. 1176.
PubMed
PubMed Central
Article
CAS
Google Scholar
Vernet, M., Bashir, S., Yoo, W.-K., et al., Insights on the neural basis of motor plasticity induced by theta burst stimulation from TMS-EEG, Eur. J. Neurosci., 2013, vol. 37, p. 598.
PubMed
Article
Google Scholar
Marshall, L., Kirov, R., Brade, J., et al., Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans, PLoS One, 2011, 6, p. e16905.
PubMed
PubMed Central
Article
CAS
Google Scholar
Sauseng, P., Gerloff, C., and Hummel, F.C., Two brakes are better than one: the neural bases of inhibitory control of motor memory traces, Neuroimage, 2013, vol. 65, p. 52.
PubMed
Article
Google Scholar
Engel, A.K., Fries, P., and Singer, W., Dynamic predictions: oscillations and synchrony in top-down processing, Nat. Rev. Neurosci., 2001, vol. 2, p. 704.
PubMed
Article
CAS
Google Scholar
Varela, F., Lachaux, J.P., Rodriguez, E., and Martinerie, J., The brainweb: phase synchronization and large-scale integration, Nat. Rev. Neurosci., 2001, vol. 2, p. 229.
PubMed
Article
CAS
Google Scholar
Buzsáki, G. and Draguhn, A., Neuronal oscillations in cortical networks, Science, 2004, vol. 304, p. 1926.
PubMed
Article
CAS
Google Scholar
Krawinkel, L.A., Engel, A.K., and Hummel, F.C., Modulating pathological oscillations by rhythmic non-invasive brain stimulation—a therapeutic concept? Front. Syst. Neurosci., 2015, vol. 9, art. ID 33.
Huang, Y.Z., Edwards, M.J., Rounis, E., et al., Theta burst stimulation of the human motor cortex, Neuron, 2005, vol. 45, p. 201.
PubMed
Article
CAS
Google Scholar
Pascual-Leone, A., Valls-Solé, J., Wassermann, E.M., and Hallett, M., Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex, Brain, 1994, vol. 117, no. 4, p. 847.
PubMed
Article
Google Scholar
Crowell, A.L., Ryapolova-Webb, E.S., Ostrem, J.L., et al., Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study, Brain, 2012, vol. 135, no. 2, p. 615.
PubMed
PubMed Central
Article
Google Scholar
Heinrichs-Graham, E., Wilson, T.W., Santamaria, P.M., et al., Neuromagnetic evidence of abnormal movement-related beta desynchronization in Parkinson’s disease, Cereb. Cortex, 2014, vol. 24, p. 2669.
PubMed
Article
Google Scholar
Herz, D.M., Florin, E., Christensen, M.S., et al., Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson’s disease, Cerebral Cortex, 2014, vol. 24, p. 2873.
PubMed
Article
Google Scholar
Sun, Y., Farzan, F., Barr, M.S., et al., γOscillations in schizophrenia: mechanisms and clinical significance, Brain Res., 2011, vol. 1413, p. 98.
PubMed
Article
CAS
Google Scholar
Uhlhaas, P.J., Haenschel, C., Nikolic, D., and Singer, W., The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia, Schizophr. Bull., 2008, vol. 34, p. 927.
PubMed
PubMed Central
Article
Google Scholar
Andreou, C., Nolte, G., Leicht, G., et al., Increased resting-state gamma-band connectivity in first-episode schizophrenia, Schizophr. Bull., 2014, vol. 4, p. 930.
Google Scholar
Westlake, K.P., Hinkley, L.B., Bucci, M., et al., Resting state a-band functional connectivity and recovery after stroke, Exp. Neurol., 2012, vol. 237, p. 160.
PubMed
PubMed Central
Article
Google Scholar
Laaksonen, K., Helle, L., Parkkonen, L., et al., Alterations in spontaneous brain oscillations during stroke recovery, PLoS One, 2013, vol. 8, e61146.
PubMed
PubMed Central
Article
CAS
Google Scholar
Siebner, H.R. and Ziemann, U., Rippling the cortex with high frequency (>100 Hz) alternating current stimulation, J. Physiol., 2010, vol. 588, no. 24, p. 4851.
PubMed
PubMed Central
Article
CAS
Google Scholar
Pogosyan, A., Gaynor, L.D., Eusebio, A., and Brown, P. Boosting cortical activity at beta-band frequencies slows movement in humans, Curr. Biol., 2009, vol. 19, p. 1637.
PubMed
PubMed Central
Article
CAS
Google Scholar
Lapenta, O.M., Minati, L., Fregni, F., and Boggio, P.S., Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation, Front. Hum. Neurosci., 2013, vol. 7, p. 256.
PubMed
PubMed Central
Article
Google Scholar
Adrian, E.D. and Matthews, B.H., The Berger rhythm: potential changes from the occipital lobes of man, Brain, 1934, vol. 57, p. 355.
Article
Google Scholar
Barlow, J.S., Rhythmic activity induced by photic stimulation in relation to intrinsical activity of the brain in man, Electroencephalogr. Clin. Neurophysiol., 1960, vol. 12, p. 317.
PubMed
Article
CAS
Google Scholar
Williams, J.H., Frequency-specific effects of flicker on recognition memory, Neuroscience, 2001, vol. 104, p. 283.
PubMed
Article
CAS
Google Scholar
Williams, J., Ramaswamy, D., and Oulhaj, A., 10 Hz flicker improves recognition memory in older people, BMC Neurosci., 2006, vol. 7, no. 5, p. 21.
PubMed
PubMed Central
Article
Google Scholar
Priplata, A., Niemi, J.B., Harry, J.D., Lipsitz, L.A., and Collins, J.J., Vibrating insoles and balance control in elderly people, Lancet, 2007, vol. 362, p. 1123.
Article
Google Scholar
Costa, M., Priplata, A.A., Lipsitz, L.A., et al., Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy, Europhys. Lett., 2007, vol. 77, no. 6, p. 68008.
PubMed
PubMed Central
Article
CAS
Google Scholar
Yamamoto, Y., Struzik, Z.R., Soma, R., et al., Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders, Ann. Neurol., 2005, vol. 58, p. 175.
PubMed
Article
Google Scholar
Ross, S., Arnold, B., Blackburn, J.T., et al., Enhanced balance associated with coordination training with stochastic resonance stimulation in subjects with functional ankle instability: an experimental trial, J. Neuroeng. Rehabil., 2007, vol. 4, no. 7, p. 47.
PubMed
PubMed Central
Article
Google Scholar
Soderlund, G., Sikstrom, S., Loftesnes, J., et al., The effects of background white noise on memory performance in inattentive school children, Behav. Brain Funct., 2010, vol. 6, no. 1, p. 55.
PubMed
PubMed Central
Article
Google Scholar
Sikström, S. and Söderlund, G., Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder, Psychol. Rev., 2007, vol. 114, p. 1047.
PubMed
Article
Google Scholar
Soderlund, G., Sikstrom, S., and Smart, A., Listen to the noise: noise is beneficial for cognitive performance in ADHD, J. Child Psychol. Psychiatry, 2007, vol. 48, no. 8, p. 840847.
Article
Google Scholar
Zueva, M.V., Dynamic fractal flickering as a tool in research of non-linear dynamics of the evoked activity of a visual system and the possible basis for new diagnostics and treatment of neurodegenerative diseases of the retina and brain, World Appl. Sci. J., 2013, vol. 427, p. 462.
Google Scholar
Hove, M.J., Suzuki, K., Uchitomi, H., et al., Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients, PLoS One, 2012, vol. 7, no. 3, p. e32600.
PubMed
PubMed Central
Article
CAS
Google Scholar
Sejdic, E., Fu, Y., Pak, A., et al., The effects of rhythmic sensory cues on the temporal dynamics of human gait, PLoS One, 2012, vol. 7, no. 8, p. e43104.
PubMed
PubMed Central
Article
CAS
Google Scholar
Hunt, N., McGrath, D., and Stergiou, N., The influence of auditory-motor coupling on fractal dynamics in human gait, Sci. Rep., 2014, vol. 4, p. 5879.
PubMed
PubMed Central
Article
CAS
Google Scholar
Rhea, C.K., Kiefer, A.W., Wittstein, M.W., et al., Fractal gait patterns are retained after entrainment to a fractal stimulus, PLoS One, 2014, vol. 9, no. 9, p. e106755.
PubMed
PubMed Central
Article
CAS
Google Scholar
Manjarrez, E., Rojas-Piloni, J., Méndez, I., et al., Internal stochastic resonance in the coherence between spinal and cortical neuronal ensembles in the cat, Neurosci. Lett., 2002, vol. 326, p. 93.
PubMed
Article
CAS
Google Scholar
Hummel, F. and Gerloff, C., Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans, Cereb. Cortex, 2005, vol. 15, p. 670.
PubMed
Article
Google Scholar
Schoffelen, J.M., Oostenveld, R., and Fries, P., Neuronal coherence as a mechanism of effective corticospinal interaction, Science, 2005, vol. 308, p. 111.
PubMed
Article
CAS
Google Scholar
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., and Zhou, C.S., The synchronization of chaotic systems, Phys. Rep., 2002, vol. 366, nos. 1–2, p. 1.
Article
CAS
Google Scholar
Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C., Synchronization in complex networks, Phys. Rep., 2008, vol. 469, no. 3, p. 93.
Article
Google Scholar
Bigerelle, M. and Iost, A., Fractal dimension and classification of music, Chaos, Solitons Fractals, 2000, vol. 11, no. 14, p. 2179.
Article
Google Scholar
Hazard, C., Kimport, C., and Johnson, D., Fractal music, Research project, 1998-1999. http://www.tursiops. cc/fm.
Google Scholar
Pyankova, S.D., Fractal analysis in psychology: perception of self-similar objects, Psikhol. Issled., 2016, vol. 9, no. 46, p. 12. http://psystudy.ru/ index.php/eng/v9n46e/1278-pyankova46.html.
Google Scholar
Särkämö, T., Ripollés, P., Versäläinen, H., et al., Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study, Front. Hum. Neurosci., 2014, vol. 8, art. ID 301. doi 10.3389/ fnhum.2014.00245
Jaušovec, N., Jaušovec, K., and Gerlic, I., The influence of Mozart’s music on brain activity in the process of learning, Clin. Neurophysiol., 2006, vol. 117, no. 12, p. 2703. doi 10.1016/j.clinph.2006.08.010
PubMed
Article
Google Scholar
Nozaradan, S., Exploring how musical rhythm entrains brain activity with electroencephalogram frequency- tagging, Philos. Trans. R. Soc., B, 2014, vol. 369, p. 20130393.
Article
Google Scholar
Hsü, K.J. and Hsü, A., Self-similarity of the 1/f Noise called music, Proc. Natl. Acad. Sci. U.S.A., 1991, vol. 88, p. 3507.
PubMed
PubMed Central
Article
Google Scholar
Jenkins, J.S., The Mozart effect, J. R. Soc. Med., 2001, vol. 94, no. 4, p. 170.
PubMed
PubMed Central
Article
CAS
Google Scholar
Strait, D.L., Parbery-Clark, A., Hittner, E., and Kraus, N., Musical training during early childhood enhances the neural encoding of speech in noise, Brain Lang., 2012, vol. 123, p. 191.
PubMed
PubMed Central
Article
Google Scholar
Kraus, N. and White-Schwoch, T., Music training: lifelong investment to protect the brain from aging and hearing loss, Acoust. Austral., 2014, vol. 42, no. 2, p. 117.
Google Scholar
Herholz, S.C. and Zatorre, R.J., Musical training as a framework for brain plasticity: behavior, function, and structure, Neuron, 2012, vol. 76, p. 486.
PubMed
Article
CAS
Google Scholar
Namazi, H., Kulish, V., and Akrami, A., The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal, Sci. Res., 2016, vol. 6, p. 26639.
CAS
Google Scholar
Zueva, M., Semenova, N., Tsapenko, I., et al., Fractal photobiomodulation of evoked electrical potentials of the rabbit’s retina: the first experience of a new technology application, VIII Rossiiskii obshchenatsional’nyi oftal’mologicheskii forum (VIII Russian National Ophthalmic Forum), Moscow, 2015, p. 50.
Google Scholar