Skip to main content
Log in

Spatial Selectivity of Hearing in Speech Recognition in Speech-shaped Noise Environment

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

A variety of perceptual features can be used for the successful separation of information flows and higher speech intelligibility. The binaural system based on the spatial allocation of speech signals plays the most important role in attaining this goal. This review discusses how the mechanisms of spatial hearing provide selective attention to a target speech source and promote the recognition of a masked target signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherry, E.C., Some experiments on the recognition of speech, with one and with two ears, J. Acoust. Soc. Am., 1953, vol. 25, p. 975.

    Article  Google Scholar 

  2. Bregman, A.S., Auditory Scene Analysis: The Perceptual Organization of Sound, Cambridge: MIT Press, 1990.

    Google Scholar 

  3. Bronkhorst, A.W., The cocktail-party problem revisited: early processing and selection of multi-talker speech, Atten. Percept. Psychophys., 2015, vol. 77, no. 5, p. 1465.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Langmuir, I., Schaefer, V.J., Ferguson, C.V., and Hennelly, E.F., A Study of Binaural Perception of the Direction of a Sound Source: General Electric Research Laboratory Report, OSRD No. 4079, Washington, DC: US Dep. Comm., 1944, p. 1.

    Google Scholar 

  5. Hirsh, I.J., The influence of interaural phase on interaural summation and inhibition, J. Acoust. Soc. Am., 1948, vol. 20, p. 536.

    Article  Google Scholar 

  6. Licklider, J.C.R., The influence of interaural phase relations upon the masking of speech by white noise, J. Acoust. Soc. Am., 1948, vol. 20, p. 150.

    Article  Google Scholar 

  7. Durlach, N.I., Binaural signal detection: equalization and cancellation theory, in Foundations of Modern Auditory Theory, Tobias, J.V., Ed., New York: Academic, 1972, p. 369.

    Google Scholar 

  8. Zurek, P.M., Binaural advantages and directional effects in speech intelligibility, in Acoustical Factors Affecting Hearing Aid Performance, Studebaker, G.A. and Hochberg, I., Eds., Boston: Allyn and Bacon, 1993, p. 255.

    Google Scholar 

  9. Lingner, A., Wiegrebe, L., and Grothe, B., Sound localization in noise by gerbils and humans, J. Assoc. Res. Otolaryngol., 2012, vol. 13, p. 237.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cutting, J.E., Auditory and linguistic processes in speech perception: inferences from six fusions in dichotic listening, Psychol. Rev., 1976, vol. 83, p. 114.

    Article  CAS  PubMed  Google Scholar 

  11. Ahveninen, J., Jääskeläinen, I.P., Raij, T., et al., Taskmodulated “what” and “where” pathways in human auditory cortex, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, p. 14608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alain, C., Arnott, S.R., Hevenor, S., et al., “What” and “where” in the human auditory system, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, p. 12301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Middlebrooks, J.C. and Green, D.M., Sound localization by human listeners, Annu. Rev. Psychol., 1991, vol. 42, p. 135.

    Article  CAS  PubMed  Google Scholar 

  14. Slattery, W.H. III and Middlebrooks, J.C., Monaural sound localization: acute versus chronic unilateral impairment, Hear. Res., 1994, vol. 75, p. 38.

    Article  PubMed  Google Scholar 

  15. Best, V., Gallun, F.J., Ihlefeld, A., and Shinn-Cunningham, B.G., The influence of spatial separation on divided listening, J. Acoust. Soc. Am., 2006, vol. 120, p. 1506.

    Article  PubMed  Google Scholar 

  16. Broadbent, D.E., Perception and Communication, London: Pergamon, 1958.

    Book  Google Scholar 

  17. Conway, A.R., Cowan, N., and Bunting, M.F., The cocktail party phenomenon revisited: the importance of working memory capacity, Psychon. Bull. Rev., 2001, vol. 8, no. 2, p. 331.

    Article  CAS  PubMed  Google Scholar 

  18. Bronkhorst, A.W., The cocktail party phenomenon: A review of research on speech intelligibility in multipletalker conditions, Acustica, 2000, vol. 86, p. 117.

    Google Scholar 

  19. Freyman, R.L., Helfer, K.S., McCall, D.D., and Clifton, R.K., The role of perceived spatial separation in the unmasking of speech, J. Acoust. Soc. Am., 1999, vol. 106, p. 3578.

    Article  CAS  PubMed  Google Scholar 

  20. Shinn-Cunningham, B.G., Schickler, J., Kopco, N., and Litovsky, R., Spatial unmasking of nearby speech sources in a simulated anechoic environment, J. Acoust. Soc. Am., 2001, vol. 110, no. 2, p. 1118.

    Article  CAS  PubMed  Google Scholar 

  21. MacPherson, A. and Akeroyd, M.A., Variations in the slope of the psychometric functions for speech intelligibility: a systematic survey, Trends Hear., 2014, no. 18, p. 1.

    Google Scholar 

  22. Lentz, J.J., He, Y., and Townsend, J.T., A new perspective on binaural integration using response time methodology: super capacity revealed in conditions of binaural masking release, Front. Hum. Neurosci., 2014, vol. 8, no. 641, p. 1.

    Google Scholar 

  23. Blauert, J., Spatial Hearing: The Psychophysics of Human. Sound Localization, Cambridge, Ma: MIT Press, 1983, 2nd ed.

    Google Scholar 

  24. Wightman, F. and Kistler, D., Measurement and validation of human HRTFs for use in research, Acta Acust. Acust., 2005, vol. 91, p. 429.

    Google Scholar 

  25. Gardner, W. and Keith, M.D., HRTF Measurements of a KEMAR, J. Acoust. Soc. Am., 1995, vol. 97, no. 6, p. 3907.

    Article  Google Scholar 

  26. Brungart, D.S. and Rabinowitz, W., Auditory localization of nearby sources. Head-related transfer functions, J. Acoust. Soc. Am., 1999, vol. 106, no. 3, p. 1465.

    Article  CAS  PubMed  Google Scholar 

  27. Coleman, P.D., Failure to localize the source distance of an unfamiliar sound, J. Acoust. Soc. Am., 1962, vol. 34, no. 3, p. 345.

    Article  Google Scholar 

  28. Durlach, N.I., Gabriel, K.J., Colburn, H.S., and Trahiotis, C., Interaural correlation discrimination. II. Relation to binaural unmasking, J. Acoust. Soc. Am., 1986, vol. 79, p. 1548.

    Article  CAS  PubMed  Google Scholar 

  29. Beutelmann, R., Brand, T., and Kollmeier, B., Revision, extension, and evaluation of a binaural speech intelligibility model, J. Acoust. Soc. Am., 2010, vol. 127, no. 4, p. 2479.

    Article  PubMed  Google Scholar 

  30. Lavandier, M., Jelfs, S., Culling, J.F., et al., Binaural prediction of speech intelligibility in reverberant rooms with multiple noise sources, J. Acoust. Soc. Am., 2012, vol. 131, no. 1, p. 218.

    Article  PubMed  Google Scholar 

  31. Jones, G.L. and Litovsky, R.Y., A cocktail party model of spatial release from masking by both noise and speech interferers, J. Acoust. Soc. Am., 2011, vol. 130, no. 3, p. 1463.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Durlach, N.I., Mason, C.R., Kidd, G., Jr., et al., Note on informational masking, J. Acoust. Soc. Am., 2003, vol. 11, p. 2984.

    Article  Google Scholar 

  33. Brungart, D.S., Informational and energetic masking effects in the perception of two simultaneous talkers, J. Acoust. Soc. Am., 2001, vol. 109, p. 1101.

    Article  CAS  PubMed  Google Scholar 

  34. Kidd, G., Jr., Mason, C.R., Richards, V.M., et al., Informational masking, in Auditory Perception of Sound Sources, Yost, W.A. and Fay, R.R., Eds., Berlin: Springer-Verlag, 2008, vol. 29, p. 143.

    Article  Google Scholar 

  35. Marrone, N., Mason, C.R., and Kidd, G., Jr., Tuning in the spatial dimension: evidence from a masked speech identification task, J. Acoust. Soc. Am., 2008, vol. 124, p. 1146.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Best, V., Marrone, N., Mason, C.R., and Kidd, G., Jr., The influence of non-spatial factors on measures of spatial release from masking, J. Acoust. Soc. Am., 2012, vol. 131, no. 4, p. 3103.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ihlefeld, A. and Shinn-Cunningham, B.G., Spatial release from energetic and informational masking in a selective speech identification task, J. Acoust. Soc. Am., 2008, vol. 123, p. 4369.

    Article  PubMed  Google Scholar 

  38. Jones, G.L. and Litovsky, R.Y., A cocktail party model of spatial release from masking by both noise and speech interers, J. Acoust. Soc. Am., 2011, vol. 130, p. 1463.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Litovsky, R.Y., Spatial release from masking, Acoust. Today, 2012, vol. 8, no. 2, p. 18.

    Article  Google Scholar 

  40. Rothpletz, A.M., Wightman, F.L., and Kistler, D.J., Informational masking and spatial hearing in listeners with and without unilateral hearing loss, J. Speech Lang., Hear. Res., 2012, vol. 55, no. 2, p. 511.

    Article  Google Scholar 

  41. Altman, J.A. and Andreeva, I.G., Monaural perception and binaural perception of approaching and withdrawing auditory images in humans, Int. J. Audiol., 2004, vol. 43, no. 4, p. 227.

    Article  PubMed  Google Scholar 

  42. Culling, J.F. and Colburn, H.S., Binaural sluggishness in the perception of tone sequences and speech in noise, J. Acoust. Soc. Am., 2000, vol. 107, no. 1, p. 517.

    Article  CAS  PubMed  Google Scholar 

  43. Grantham, D.W. and Wightman, F.L., Detectability of a pulsed tone in the presence of a masker with timevarying interaural correlation, J. Acoust. Soc. Am., 1979, vol. 65, p. 1509.

    Article  CAS  PubMed  Google Scholar 

  44. Kollmeier, B. and Gilkey, R.H., Binaural forward and backward masking: evidence for sluggishness in binaural detection, J. Acoust. Soc. Am., 1990, vol. 87, p. 1709.

    Article  CAS  PubMed  Google Scholar 

  45. Culling, J.F. and Summerfield, Q., Measurements of the binaural temporal window using a detection task, J. Acoust. Soc. Am., 1998, vol. 103, p. 3540.

    Article  Google Scholar 

  46. Akeroyd, M.A. and Summerfield, Q., A binaural analog of gap detection, J. Acoust. Soc. Am., 1999, vol. 105, p. 2807.

    Article  CAS  PubMed  Google Scholar 

  47. Hawley, M.L., Litovsky, R.Y., and Culling, J.F., The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer, J. Acoust. Soc. Am., 2004, vol. 115, p. 833.

    Article  PubMed  Google Scholar 

  48. Bronkhorst, A.W. and Plomp, R., The effect of headinduced interaural time and level differences on speech intelligibility in noise, J. Acoust. Soc. Am., 1988, vol. 83, no. 4, p. 1508.

    Article  CAS  PubMed  Google Scholar 

  49. Brungart, D.S. and Iyer, N., Better-ear glimpsing efficiency with symmetrically-placed interfering talkers, J. Acoust. Soc. Am., 2012, vol. 132, no. 4, p. 2545.

    Article  PubMed  Google Scholar 

  50. Glyde, H., Buchholz, J.M., Dillon, H., et al., The importance of interaural time differences and level differences in spatial release from masking, J. Acoust. Soc. Am., 2013, vol. 134, no. 2, p. 147.

    Article  Google Scholar 

  51. Best, V., Thompson, E.R., Mason, C.R., and Kidd, G., Jr., An energetic limit on spatial release from masking, J. Assoc. Res. Otolaryngol., 2013, vol. 14, no. 4, p. 603.

    PubMed  Google Scholar 

  52. Wiggins, I.M. and Seeber, B.U., Linking dynamicrange compression across the ears can improve speech intelligibility in spatially separated noise, J. Acoust. Soc. Am., 2013, vol. 133, no. 2, p. 1004.

    Article  PubMed  Google Scholar 

  53. Culling, J.F., Hawley, M.L., and Litovsky, R.Y., The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources, J. Acoust. Soc. Am., 2004, vol. 116, p. 1057.

    Article  PubMed  Google Scholar 

  54. Cameron, S. and Dillon, H., The listening in spatialized noise-sentences test (LISN-S): test-retest reliability study, Int. J. Audiol., 2007, vol. 46, no. 3, p. 145.

    Article  PubMed  Google Scholar 

  55. Kidd, G., Jr., Mason, C.R., Rohtla, T.L., and Deliwala, P.S., Release from masking due to spatial separation of sources in the identification of nonspeech auditory patterns, J. Acoust. Soc. Am., 1998, vol. 104, p. 422.

    Article  PubMed  Google Scholar 

  56. Kidd, G., Jr., Mason, C.R., Best, V., and Marrone, N., Stimulus factors influencing spatial release from speech-on-speech masking, J. Acoust. Soc. Am., 2010, vol. 128, no. 4, p. 1965.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zahorik, P., Brungart, D.S., and Bronkhorst, A.W., Auditory distance perception in humans: A summary of past and present research, Acta Acust. Acust., 2005, vol. 91, no. 3, p. 409.

    Google Scholar 

  58. Zahorik, P., Estimating sound source distance with and without vision, Optom. Vision Sci., 2001, vol. 78, no. 5, p. 270.

    Article  CAS  Google Scholar 

  59. Chen, L. and Vroomen, J.J., Intersensory binding across space and time: a tutorial review, Atten. Percept. Psychophys., 2013, vol. 75, p. 790.

    Article  PubMed  Google Scholar 

  60. Kolarik, A.J., Moore, B.C.J., Zahorik, P., et al., Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss, Atten. Percept. Psychophys., 2016, vol. 78, p. 373.

    Article  PubMed  Google Scholar 

  61. Ronsse, L.M. and Wang, L.M., Effects of room size and reverberation, receiver location, and source rotation on acoustical metrics related to source localization, Acta Acoust. Acust., 2012, vol. 98, no. 5, p. 768.

    Article  Google Scholar 

  62. Westermann, A. and Buchholz, J.M., The influence of informational masking in reverberant, multi-talker environment, J. Acoust. Soc. Am., 2015, vol. 138, no. 2, p. 584.

    Article  PubMed  Google Scholar 

  63. Brungart, D.S. and Simpson, B.D., Effect of targetmasker similarity on across-ear interference in a dichotic cocktail-party listening task, J. Acoust. Soc. Am., 2007, vol. 122, p. 1724.

    Article  PubMed  Google Scholar 

  64. Bronkhorst, A.W. and Plomp, R., A clinical test for the assessment of binaural speech perception in noise, Audiology, 1990, vol. 29, no. 5, p. 275.

    Article  CAS  PubMed  Google Scholar 

  65. Haustein, B.G., Hypothesen uber die einhorige Entferungswahrnehmung des menschlichen Gehxrs, Hochfrequensthechnick Electroakust., 1969, vol. 78, no. 2, p. 45.

    Google Scholar 

  66. Mershon, D.H. and Bowers, J.N., Absolute and relative cues for the auditory perception of egocentric distance, Perception, 1979, vol. 8, no. 3, p. 311.

    Article  CAS  PubMed  Google Scholar 

  67. Andreeva, I.G., The threshold duration of signal in human perception of radial motion of sound image with different spectral bands, Sens. Sist., 2004, vol. 18, no. 3, p. 233.

    Google Scholar 

  68. Andreeva, I.G. and Nikolaeva, A.V., Auditory motion aftereffects of low- and high-frequency sound stimuli, Hum. Physiol., 2013, vol. 39, no. 4, p. 450.

    Article  Google Scholar 

  69. Gvozdeva, A.P., Andreeva, I.G., Ogorodnikova, E.A., and Pak, S.P., The thresholds of detecting the audio signal on the background of a speech masker in conditions of their separation from the distance, Materialy XV Vserossiiskogo soveshchaniya s mezhdunarodnym uchastiem i VIII Shkoly po evolyutsionnoi fiziologii (Proc. XV All-Russ. Congr. with International Participation and VIII Workshop on Evolutionary Physiology), St. Petersburg, 2016, p. 48.

    Google Scholar 

  70. Lochner, J. and Burger, J., The influence of reflections on auditorium acoustics, J. Sound Vib., 1964, vol. 1, p. 426.

    Article  Google Scholar 

  71. Nábĕlek, A.K. and Robinette, L., Influence of the precedence effect on word identification by normally hearing and hearing-impaired subjects, J. Acoust. Soc. Am., 1978, vol. 63, p. 187.

    Article  PubMed  Google Scholar 

  72. Bradley, J.S., Sato, H., and Picard, M., On the importance of early reflections for speech in rooms, J. Acoust. Soc. Am., 2003, vol. 113, p. 3233.

    Article  CAS  PubMed  Google Scholar 

  73. Arweiler, I. and Buchholz, J.M., The influence of spectral characteristics of early reflections on speech intelligibility, J. Acoust. Soc. Am., 2011, vol. 130, p. 996.

    Article  PubMed  Google Scholar 

  74. Lavandier, M. and Culling, J.F., Speech segregation in rooms: monaural, binaural, and interacting effects of reverberation on target and interferer, J. Acoust. Soc. Am., 2008, vol. 123, p. 2237.

    Article  PubMed  Google Scholar 

  75. Houtgast, T. and Steeneken, H.J.M., A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria, J. Acoust. Soc. Am., 1985, vol. 77, p. 1069.

    Article  Google Scholar 

  76. Zahorik, P., Assessing auditory distance perception using virtual acoustics, J. Acoust. Soc. Am., 2002, vol. 111, p. 1832.

    Article  PubMed  Google Scholar 

  77. Warzybok, A., Rennies, J., Brand, T., et al., Effects of spatial and temporal integration of a single early reflection on speech intelligibility, J. Acoust. Soc. Am., 2013, vol. 133, no. 1, p. 269.

    Article  PubMed  Google Scholar 

  78. Plomp, R., Binaural and monaural speech intelligibility of connected discourse in reverberation as a function of azimuth of a single competing sound source (speech or noise), Acustica, 1976, vol. 34, p. 200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Andreeva.

Additional information

Original Russian Text © I.G. Andreeva, 2018, published in Fiziologiya Cheloveka, 2018, Vol. 44, No. 2, pp. 124–136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, I.G. Spatial Selectivity of Hearing in Speech Recognition in Speech-shaped Noise Environment. Hum Physiol 44, 226–236 (2018). https://doi.org/10.1134/S0362119718020020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119718020020

Keywords

Navigation