Skip to main content
Log in

Evaluation of Functional and Biomechanical Properties of Bone Regenerates

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Functional tests with incrementing axial load on the affected limb were performed in patients with humerus, tibia and fibula fractures, or undergoing tibial bone lengthening using the Ilizarov apparatus (n = 75). It was found that oossification was associated with a decrease in the blood flow velocity in the arteries of the bone regenerate. In the humerus, the exercise tolerance was two to three times lower, while the micromotion rate of bone fragments and the blood flow velocity were higher. The micromotion rate and the blood flow velocity decreased by the end of the fixation period, since they were no longer affected by the incrementing load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sano, H., Uhthoff, H.K., Backman, D.S., and Yeadon, A., Correlation of radiographic measurements with biomechanical test results, Clin. Orthop. Relat. Res., 1999, vol. 368, p. 271.

    Article  Google Scholar 

  2. Dodd, S.P., Miles, A.W., Gheduzzi, S., et al., Ultrasound transmission loss across transverse and oblique bone fractures: an in vitro study, Comput. Methods Biomech. Biomed. Eng., 2008, vol. 34, no. 3, p. 454.

    Google Scholar 

  3. Glinkowski, W. and Gorecki, A., Clinical experiences with ultrasonometric measurement of fracture healing, Technol. Health Care, 2006, vol. 14, nos. 4–5, p. 321.

    PubMed  Google Scholar 

  4. D’yachkov, K.A., Korabel’nikov, M.A., D’yachkova, G.V., et al., Magnetic resonance tomography— semiotics of distraction regenerate, Med. Vizualizatsiya, 2011, no. 5, p. 99.

    Google Scholar 

  5. Watanabe, Y., Takai, S., Arai, Y., et al., Prediction of mechanical properties of healing fractures using acoustic emission, J. Orthop. Res., 2001, vol. 19, p. 548.

    Article  CAS  PubMed  Google Scholar 

  6. Vvedenskii, P.S., The study of the mechanical properties of distraction regenerate, Fundam. Issled., 2013, no. 9 (6), p. 1172.

    Google Scholar 

  7. Rusakov, S.A. and Mukha, Yu.L., Determination of the axial stiffness of bone regenerate, Sovrem. Probl. Nauki Obraz., 2013, no. 2, p. 240.

    Google Scholar 

  8. Seide, K., Weinrich, N., Wenzl, M.E., et al., Threedimensional load measurements in an external fixator, J. Biomech., 2004, vol. 37, p. 1361.

    Article  CAS  PubMed  Google Scholar 

  9. Ogrodnik, P.J., Moorcroft, C.I., and Thomas, P.B., Measuring multi-dimensional, time-dependent mechanical properties of a human tibial fracture using an automated system, Proc. Inst. Mech. Eng., Part H, 2007, vol. 221, no. 6, p. 641.

    Article  CAS  Google Scholar 

  10. Eastaugh-Waring, S.J., Hardy, J.R., and Cunningham, J.L., Fracture stiffness measurement using the orthometer: reproducibility and sources of error, Clin. Biomech., 2000, vol. 15, no. 2, p. 140.

    Article  CAS  Google Scholar 

  11. Shchurov, V.A., Elastic compliance and blood supply of distraction regenerate, Ross. Zh. Biomekh., 2014, vol. 18, no. 4, p. 471.

    Google Scholar 

  12. Shchurov, V.A. and Shchurov, I.V., Lechenie perelomov kostei goleni po Ilizarovu. Biomekhanicheskie, biologicheskie i meditsinskie aspekty (Treatment of Broken Bones of the Shin by Ilizarov Method: Biomechanical, Biological, and Medical Aspects), Saarbrucken: Lap Lambert Akademie, 2012.

    Google Scholar 

  13. Shevtsov, V.I., Shchurov, V.A., Shigarev, V.M., and Dolganov, D.V. Evaluation of the effect of fixation rigidity of fragments of the tibia in olyosynthesis according to Ilizarov on the blood supply of the tibia, Travmatol. Ortop. Ross., 1994, no. 2, p. 87.

    Google Scholar 

  14. Popkov, A.V. and Osipenko, A.A., Regeneratsiya tkanei pri udlinenii konechnostei (Tissue Regeneration during Limb Elongation), Moscow: GEOTAR-Media, 2008.

    Google Scholar 

  15. Dolganova, T.I., Shchurov, V.A., Dolganov, D.V., et al., Rheological properties of the distraction regeneration of the tibia, Genii Ortop., 2016, no. 2, p. 64.

    Article  Google Scholar 

  16. Savitskii, N.N., Biofizicheskie osnovy krovoobrashcheniya i klinicheskie metody izucheniya geomodinamiki (Biophysical Principles of Blood Circulation and Clinical Study of Hemodynamics), Leningrad: Meditsina, 1974.

    Google Scholar 

  17. Shchurov, V.A., Sazonova, N.V., and Shchurov, I.V., Evaluation of the biomechanical properties of soft tissues of the foot support surface, Ross. Zh. Biomekh., 2008, vol. 12, no. 4 (42), p. 47.

    Google Scholar 

  18. Holstein, J.H., Karabin-Kehl, B., Scherer, C., et al., Endostatin inhibits callus remodeling during fracture healing in mice, J. Orthop. Res., 2013, vol. 31, no. 10, p. 1570.

    Article  Google Scholar 

  19. Marenzena, M. and Arnett, T.R., The key role of the blood supple to bone, Bone Res., 2013, vol. 1, no. 3, p. 203.

    Article  Google Scholar 

  20. Shchudlo, M.M. and Shchudlo, N.A., The mechanical properties of distraction regenerate, Vestn. Ross. Akad. Med. Nauk, 2002, no. 3, p. 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Schurov.

Additional information

Original Russian Text © V.A. Schurov, M. Mesnard, 2018, published in Fiziologiya Cheloveka, 2018, Vol. 44, No. 1, pp. 92–98.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schurov, V.A., Mesnard, M. Evaluation of Functional and Biomechanical Properties of Bone Regenerates. Hum Physiol 44, 77–82 (2018). https://doi.org/10.1134/S0362119718010164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119718010164

Keywords

Navigation