Skip to main content
Log in

Electrophysiological Correlates of Major Depression Disorder with Anxious Distress in Patients of Different Age Groups

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The electrophysiological correlates of major depression disorder with anxious distress in patients of different age groups have been investigated. The spectral characteristics of 19-channel background EEG were analyzed and the power spectra recorded with the eyes closed vs. eyes open in 64 patients with anxiety–depressive disorder and in 194 healthy subjects were compared. The subjects were divided into the two age groups: 18–39 and 40–76 years old. The spectral parameters were calculated for 5 main EEG frequency bands: θ (4–8 Hz), α (8–12 Hz), β1 (12–20 Hz), β2 (20–30 Hz), and γ (30–40 Hz). The most statistically significant differences between the groups were found in the α, β, and γ bands. Lower values of spectral power of the α rhythm in occipital areas and the higher values of spectral power of the β and γ rhythms in the frontocentral region were recorded in the group of 18-to-39-year-old patients with the eyes closed. Higher values of spectral power of the β rhythm in the fronto-central region and in the left temporal lobe were recorded in the group of 40-to-76-year-old patients with both the eyes closed and the eyes open. The higher β-activity in the fronto-central regions in both groups of patients may be caused by increased excitability of the cerebral cortex and decreased activity of inhibitory processes. Increased activation of the left temporal lobe in older subjects is probably associated with the severity of anxiety symptoms and may be a distinctive marker of mixed anxiety and depressive disorder. The lower values of α-power revealed only in the group of younger subjects are probably associated with age-related reorganization of EEG in older subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lopez, A. and Murray, C., The global burden of disease, 1990–2020, Nat. Med., 1998, vol. 4, p. 1241.

    Article  CAS  PubMed  Google Scholar 

  2. Davidson, R.J., EEG measures of cerebral asymmetry: conceptual and methodological issues, Int. J. Neurosci., 1988, vol. 39, nos. 1–2, p. 71.

    Article  CAS  PubMed  Google Scholar 

  3. Rotenberg, V.S., The peculiarity of the right-hemisphere function in depression: solving the paradoxes, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2004, vol. 28, no. 1, p. 1.

    Article  Google Scholar 

  4. Schaffer, C.E., Davidson, R.J., and Saron, C., Frontal and parietal electroencephalogram asymmetry in depressed and non-depressed subjects, Biol. Psychiatry, 1983, vol. 18, no. 7, p. 753.

    CAS  PubMed  Google Scholar 

  5. Davidson, R.J., Schaffer, C.E., and Saron, C., Effects of lateralized presentations of faces on self-reports of emotion and EEG asymmetry in depressed and nondepressed subjects, Psychophysiology, 1985, vol. 22, no. 3, p. 353.

    Article  CAS  PubMed  Google Scholar 

  6. Henriques, J.B. and Davidson, R.J., Left frontal hypoactivation in depression, J. Abnorm. Psychol., 1991, vol. 100, no. 4, p. 535.

    Article  CAS  PubMed  Google Scholar 

  7. Paquette, V., Beauregard, M., and Beaulieu-Prévost, D., Effect of a psychoneurotherapy on brain electromagnetic tomography in individuals with major depressive disorder, Psychiatry Res., 2009, vol. 174, no. 3, p. 231.

    Article  PubMed  Google Scholar 

  8. Begic, D., Mahnik-Miloš, M., and Grubišin, J., EEG characteristics in depression, “negative” and “positive” schizophrenia, Psychiatria Danubina, 2009, vol. 21, no. 4, p. 579.

    PubMed  Google Scholar 

  9. Fingelkurts, A.A., Fingelkurts, A.A., Rytsala, H., et al., Composition of brain oscillations in ongoing EEG during major depression disorder, Neurosci. Res., 2006, vol. 56, no. 2, p. 133.

    Article  PubMed  Google Scholar 

  10. Grin-Yatsenko, V., Baas, I., Ponomarev, V., et al., EEG power spectra at early stages of depressive disorders, J. Clin. Neurophysiol., 2009, vol. 26, p. 401.

    Article  PubMed  Google Scholar 

  11. Strelets, V.B., Garakh, Zh.V., and Novototskii-Vlasov, V.Yu., Comparative study of the gamma rhythm in normal conditions, during examination stress, and in patients with first depressive episode, Neurosci. Behav. Physiol., 2007, vol. 37, no. 4, p. 387.

    Article  CAS  PubMed  Google Scholar 

  12. Pollock, V.E. and Schneider, L.S., Quantitative, waking EEG research on depression, Biol. Psychiatry, 1990, vol. 27, no. 7, p. 757.

    Article  CAS  PubMed  Google Scholar 

  13. Hughes, J. and John, E., Conventional and quantitative electroencephalography in psychiatry, J. Neuropsychiatry Clin. Neurosci., 1999, vol. 11, no. 2, p. 190.

    Article  CAS  PubMed  Google Scholar 

  14. Tyrer, P., Seivewright, H., and Johnson, T., The core elements of neurosis: mixed anxiety-depression (cothymia) and personality disorder, J. Pers. Disord., 2003, V. 17, no. 2, p. 129.

    Article  PubMed  Google Scholar 

  15. Kessler, R., Berglund, P., Demler, O., et al., The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCSR), JAMA, J. Am. Med. Assoc., 2003, vol. 289, no. 23, p. 3095.

    Article  Google Scholar 

  16. Nuller, Yu.L. and Mikhalenko, I.N., Affektivnye psikhozy (Affective Psychosis), Leninigrad: Meditsina, 1988, p. 85.

    Google Scholar 

  17. Tereshchenko, E.P., Ponomarev, V.A., Myuller, A., et al., Normal indices of spectral characteristics of EEG of healthy persons from 7 to 89 years, Nov. Issled., 2010, vol. 1, no. 25, p. 4.

    Google Scholar 

  18. Schomer, D.L., The normal EEG in an adult, in The Clinical Neurophysiology Primer, New York: Springer-Verlag, 2007, p. 57.

    Chapter  Google Scholar 

  19. Vigario, R., Extraction of ocular artifacts from EEG using independent component analysis, Electroencephalogr. Clin. Neurophysiol., 1997, vol. 103, p. 395.

    Article  CAS  PubMed  Google Scholar 

  20. Cohen, J., Statistical Power Analysis for the Behavioral Sciences, San Diego, CA: Academic, 1988, p. 8.

    Google Scholar 

  21. Babiloni, C., Binetti, G., Cassarino, A., et al., Sources of cortical rhythms in adults during physiological aging: a multicentric EEG study, Hum. Brain Mapp., 2006, vol. 27, no. 2, p. 162.

    Article  PubMed  Google Scholar 

  22. Vodolazhskii, G.I., Changes in the amplitude of EEG rhythms in human ontogeny. Neurodynamic analysis, Vestn. Mosk. Gos. Obl. Univ., 2009, no. 4, p. 84.

    Google Scholar 

  23. Tucker, D.M., Stenslie, C.E., Roth, R.S., et al., Right frontal lobe activation and right hemisphere performance. Decrement during a depressed mood, Arch. Gen. Psychiatry, 1981, vol. 38, no. 2, p. 169.

    Article  CAS  PubMed  Google Scholar 

  24. Sorokina, N.D., Kositsyn, N.S., and Selitskii, G.V., Neurobiological aspects of hemispheric functional asymmetry in depression, Usp. Fiziol. Nauk, 2005, no. 2, p. 84.

    Google Scholar 

  25. Bruder, G.E., Fong, R., Tenke, C.E., et al., Regional brain asymmetries in major depression with or without an anxiety disorder: a quantitative electroencephalographic study, Biol. Psychiatry, 1997, vol. 41, no. 9, p. 939.

    Article  CAS  PubMed  Google Scholar 

  26. Mathersul, D., Williams, L.M., Hopkinson, P.J., et al., Investigating models of effect: relationship among EEG alpha asymmetry depression and anxiety, Emotion, 2008, vol. 8, no. 4, p. 560.

    Article  PubMed  Google Scholar 

  27. Tiganov, A.S., Age-related depressive states, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2013, vol. 2, no. 11, p. 3.

    Google Scholar 

  28. Heller, W., Neuropsychological mechanisms of individual differences in emotion, personality, and arousal, Neuropsychology, 1993, vol. 7, no. 4, p. 476.

    Article  Google Scholar 

  29. Iznak, A.F., Iznak, E.V., Yakovleva, O.B., Safarova, T.P., and Kornilov, V.V., Neurophysiological measures of treatment efficacy in late-onset depression, Neurosci. Behav. Physiol., 2013, vol. 43, no. 9, p. 1113.

    Article  Google Scholar 

  30. Lapin, I.A. and Alfimova, M.V., EEG markers of depressive states, Sots. Klin. Psikhiatriya, 2014, vol. 24, no. 4, p. 81.

    Google Scholar 

  31. Bel’skikh, I.A., Golubev, S.A., Kozarenko, L.A., et al., Gender differences in the structure of general human cerebral indices of the background EEG, Chel. Ego Zdorov., 2011, no. 2, p. 5.

    Google Scholar 

  32. Nusslock, R., Walden, K., and Harmon-Jones, E., Asymmetrical frontal cortical activity associated with differential risk for mood and anxiety disorder symptoms: an RDoC perspective, Int. J. Psychophysiol., 2015, vol. 98, no. 2, p. 249.

    Article  PubMed  Google Scholar 

  33. Hammond, C., The effects of caffeine on the Brain, J. Neurother., 2003, vol. 7, no. 2, p. 79.

    Article  Google Scholar 

  34. Boitsova, Yu.A. and Dan’ko, S.G., Effect of caffeine and phenazepam on the quantitative parameters of the EEG and ultraslow electrical processes in the brain, Hum. Physiol., 2007, vol. 33, no. 3, p. 366.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Shamaeva.

Additional information

Original Russian Text © T.F. Shamaeva, M.V. Pronina, G.Yu. Polyakova, Y.I. Polyakov, V.M. Klimenko, 2018, published in Fiziologiya Cheloveka, 2018, Vol. 44, No. 1, pp. 5–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamaeva, T.F., Pronina, M.V., Polyakova, G.Y. et al. Electrophysiological Correlates of Major Depression Disorder with Anxious Distress in Patients of Different Age Groups. Hum Physiol 44, 1–6 (2018). https://doi.org/10.1134/S0362119718010152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119718010152

Keywords

Navigation