Skip to main content
Log in

Nonstationary Heart Rate Variability in Respiratory Tests

  • Published:
Human Physiology Aims and scope Submit manuscript


A new method was proposed for processing a nonstationary heart rate by using frequency-modulated signals rather than amplitude-modulated signals equally spaced over several points of time as in the conventional method. A frequency-modulated signal is a set of identical Gaussian peaks that coincide with the true time points of heart beats. A continuous wavelet transform was used to quantitatively describe the heart rhythm signal. A test with controlled breathing was performed as an example and included three consecutive stages: rest, rhythmic breathing at a specified frequency, and exhalation. Tachograms recorded during the breath test was found to be a nonstationary signal with the alternation of peaks of different spectral ranges. A system of quantitative parameters was developed to describe the dynamics of changes in the spectral properties of the tachogram in transitional areas. A static clustering by the effect of the respiratory test and a dynamic clustering in order to identify the time points when the autonomic nervous system is stressed were performed for all subjects. The article discusses the prospects of using the method as a means to analyze the transient effects in various functional tests and as biofeedback that would help to change the heart rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Baevskii, R.M., Ivanov, G.G., Chireikin, L.V., et al., Analysis of heart rate variability using different cardiological systems: methodological recommendations, Vestn. Aritmol., 2002, no. 24, p. 65.

    Google Scholar 

  2. Ryabykina, G.V. and Sobolev, A.V., Monitorirovanie EKG s analizom variabil’nosti serdtsa (ECG Monitoring with Analysis of Heart Rate Variability), Moscow: Medpraktika-M, 2009.

    Google Scholar 

  3. Runova, E.V., Grigor’eva, V.N., Bakhchina, A.V., et al., Vegetative correlates of arbitrary mappings of emotional stress, Sovrem. Tekhnol. Med., 2013, vol. 5, no. 4, p. 69.

    Google Scholar 

  4. Fleishman, A.N., Korablina, T.V., Petrovskii, S.A., and Martynov, I.D., Complex structure and nonlinear behavior of very low frequency of heart rate variability: analysis and applications, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2014, vol. 22, no. 1, p. 55.

    Google Scholar 

  5. Pokrovskii, V.M., Serdechno-dykhatel’nyi sinkhronizm v otsenke regulyatorno-adaptivnykh vozmozhnostei organizma (Cardiovascular Synchronism in Evaluation of Regulatory-Adaptive Possibilities of the Organism), Krasnodar: Kuban’-Kniga, 2010.

    Google Scholar 

  6. Pokrovskii, V.M. and Polischuk, L.V., On the conscious control of the human heart, J. Integr. Neurosci., 2012, vol. 11, no. 2, p. 213.

    Article  PubMed  Google Scholar 

  7. Aronov, D.M. and Lupanov, V.P., Funktsional’nye probly v kardiologii (Functional Tests in Cardiology), Moscow: MEDpress-Inform, 2003.

    Google Scholar 

  8. Mikhailov, V.M., Variabel’nost’ serdechnogo ritma: opyt prakticheskogo primeneniya metoda (Heart Rate Variability: Practical Use), Ivanovo: Gos. Med. Akad., 2002.

    Google Scholar 

  9. Shiogai, Y., Stefanovska, A., and McClintock, P.V.E., Nonlinear dynamics of cardiovascular ageing, Phys. Rep., 2010, vol. 488, p. 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iatsenko, D., Bernjak, A., Stankovski, T., et al., Evolution of cardiorespiratory interactions with age, Philos. Trans. R. Soc., A, 2013, vol. 371, p. 20110622.

    Article  CAS  Google Scholar 

  11. Shields, R.W., Heart rate variability with deep breathing as a clinical test of cardiovagal function, Cleveland Clin. J. Med., 2009, vol. 76, no. 2, p. 37.

    Article  Google Scholar 

  12. Prinsloo, G.E., Derman, W.E., Lambert, M.I., and Rauch, H.L.R., The effect of a single session of short duration biofeedback-induced deep breathing on measures of heart rate variability during laboratory-induced cognitive stress: a pilot study, Appl. Psychophysiol. Biofeedback, 2013, vol. 38, no. 2, p. 81.

    Article  PubMed  Google Scholar 

  13. Trubachev, V.V., Gorbunov, A.V., Trubacheva, V.S., et al., Analysis of respiratory-cardiac interaction in athletes and non-athletes with an imposed respiratory rate, Ross. Fiziol. Zh. im. I.M. Sechenova, 2015, vol. 101, no. 2, p. 238.

    CAS  PubMed  Google Scholar 

  14. Kiselev, A.R., Kirichuk, V.F., Posnenkova, O.M., and Gridnev, V.I., Mechanisms of periodic heart rate oscillations: a study using controlled breathing tests, Hum. Physiol., 2005, vol. 31, no. 3, p. 309.

    Article  Google Scholar 

  15. Nesterov, S.V., Nesterov, V.P., and Burdygin, A.I., The effect of respiratory frequency on heart rate variability, Dokl. Biol. Sci., 2005, vol. 400, nos. 1–6, p. 25.

    Article  Google Scholar 

  16. Acharya, U.R., Joseph, K.P., Kannathal, K., et al., Heart rate variability, Med. Biol. Eng. Comput., 2006, vol. 44, p. 1031.

    Article  Google Scholar 

  17. Humeau, A., Buard, B., Mahé, G., et al., Multifractal analysis of heart rate variability and laser Doppler flowmetry fluctuations: comparison of results from different numerical methods, Phys. Med. Biol., 2010, vol. 55, p. 6279.

    Article  PubMed  Google Scholar 

  18. Addison, P.S., Wavelet transform and the ECG, Physiol. Meas., 2005, vol. 26, p. 155.

    Article  Google Scholar 

  19. Keissar, K., Davrath, L.R., and Akselrod, S., Coherence analysis between respiration and heart rate variability using continuous wavelet transform, Philos. Trans. R. Soc., A, 2009, vol. 367, no. 1892, p. 1393.

    Article  Google Scholar 

  20. Ducla-Soares, J.L., Santos-Bento, M., Laranjo, S., et al., Wavelet analysis of autonomic outflow of normal subjects on head-up tilt, cold pressor test, Valsalva manoeuvre and deep breathing, Exp. Physiol., 2007, vol. 92, no. 4, p. 677.

    Article  CAS  PubMed  Google Scholar 

  21. Bozhokin, S.V. and Shenkova, I.M., Analysis of the heat rate variability using stress tests, Hum. Physiol., 2008, vol. 34, no. 4, p. 461.

    Article  Google Scholar 

  22. Bozhokin, S.V., Lesova, E.M., Samoilov, V.O., and Tolkachev, P.I., Wavelet analysis of nonstationary heart rate variability in a head-up tilt-table test, Biophysics, 2012, vol. 57, no. 4, p. 530.

    Article  CAS  Google Scholar 

  23. Bozhokin, S.V. and Suslova, I.M., Double wavelet transform of frequency-modulated nonstationary signal, Tech. Phys., 2013, vol. 58, no. 12, p. 1730.

    Article  CAS  Google Scholar 

  24. Bozhokin, S.V. and Suslova, I.B., Analysis of non-stationary HRV as a frequency modulated signal by double continuous wavelet transformation method, Biomed. Signal Process. Control, 2014, vol. 10, p. 34.

    Article  Google Scholar 

  25. Hilsted, J. and Jensen, S.B., A simple test for autonomic neuropathy in juvenile diabetics, Acta Med. Scand., 1979, vol. 205, nos. 1–6, p. 385.

    CAS  PubMed  Google Scholar 

  26. Marusina, M.Ya., Suvorov, N.B., Kozachenko, A.V., and Tolkovich, D.V., Synchronization of physiological signals of human intellectual activity using a multifunctional measuring complex, Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt., 2013, no. 4 (86), p. 49.

    Google Scholar 

  27. Kiselev, A.R. and Gridnev, V.I., Fluctuation of the vegetative regulation of the cardiovascular system, Saratov. Nauchno-Med. Zh., 2011, vol. 7, no. 1, p. 34.

    Google Scholar 

  28. Lesova, E.M., Filippova, E.B., Golubev, V.N., and Dergachev, V.B., Influence of interval hypoxic trainings on hemodynamic parameters at the orthostatic load, Vestn. Ross. Voen.-Med. Akad., 2015, no. 3 (51), p. 109.

    Google Scholar 

  29. Samoilov, V.O., Maksimov, A.L., Filippova, E.B., et al., Characteristics of individual differences in a personal functional state under hypoxic hypoxia, Vestn. Ross. Voen.-Med. Akad., 2013, no. 3 (43), p. 111.

    Google Scholar 

  30. Korolev, Yu.N., Influence of interval hypoxic trainings on working activity of a man, Materialy IIV serossiiskoi zaochnoi nauchno-prakticheskoi konferentsii “Sport, Olimpizm, Olimpiiskii krai; navstrechu XXII Olimpiiskim zimnim igram i XI Paraolimpiiskim zimnim igram v gorode Sochi” (Proc. II All-Russ. Extramural Sci.- Pract. Conf. “Sport, Olimpism, and Olimpic Region: Towards XXII Olympic Winter Games and XIParalympic Winter Games in Sochi”), Krasnodar, 2012, p. 183.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. V. Bozhokin.

Additional information

Original Russian Text © S.V. Bozhokin, E.M. Lesova, V.O. Samoilov, D.E. Tarakanov, 2018, published in Fiziologiya Cheloveka, 2018, Vol. 44, No. 1, pp. 39–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhokin, S.V., Lesova, E.M., Samoilov, V.O. et al. Nonstationary Heart Rate Variability in Respiratory Tests. Hum Physiol 44, 32–40 (2018).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: