Skip to main content
Log in

Effect of Short-term Dry Immersion on Proteolytic Signaling in the Human Soleus Muscle

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

We analyzed the signaling processes initiating proteolytic events in the human soleus muscle during short-term exposure under the non-weight-bearing conditions. Dry immersion (DI) was used to induce weight deprivation in the m. soleus for 3 days. Western blotting was used to determine the level of insulin receptor substrate 1 (IRS-1), total and phosphorylated neuronal NO synthase (nNOS), and adenosine monophosphate-activated protein kinase (AMPK), which control the anabolic and catabolic signaling pathways, and the level of cytoskeletal protein desmin and Са2+-activated protease calpain. By day 3 of DI, calpain- dependent proteolysis manifests itself by reductions in both the total content and level of nNOS phosphorilation. The rate of AMPK phosphorylation was significantly decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kozlovskaya, I.B., Dmitrieva, L., Grigorieva, L.S., et al., Gravitational mechanisms in the motor system. Studies in real and simulated weightlessness, in Stance and Motion: Facts and Concepts, Gurfinkel, V.S., Ioffe, M.E., and Massion, J., Eds., New York: Springer-Verlag, 1988, pp. 37–48.

    Chapter  Google Scholar 

  2. Kozlovskaya, I.B., Grigorieva, L.S., Gevlich, G.I., et al., Comparative analysis of the weightlessness and its simulations effects on the force-velocity properties and tone of human skeletal muscles, Kosm. Biol. Aviakosm. Med., 1984, vol. 18, no. 6, pp. 22–26.

    Google Scholar 

  3. Shenkman, B.S., Nemirovskaya, T.L., Shcheglova, I.A., et al., Morphological characteristics of human m. vastus lateralis in supportlessness, Dokl. Ross. Akad. Nauk, 1999, vol. 364, no. 4, pp. 563–565.

    CAS  Google Scholar 

  4. Navasiolava, N.M., Custaud, M.-A., Tomilovskaya, E.S., et al., Long-term dry immersion: review and prospects, Eur. J. Appl. Physiol., 2011, vol. 111, no. 7, pp. 1235–1260.

    Article  CAS  PubMed  Google Scholar 

  5. Litvinova, K.S., Vikhlyantsev, I.M., Kozlovskaya, I.B., et al., Effects of artificial support stimulation on fiber and molecular characteristics of soleus muscle in men exposed to 7-day dry immersion, J. Gravitational Physiol., 2004, vol. 11, no. 2, pp. 131–132.

    Google Scholar 

  6. Moukhina, M., Shenkman, B.S., Blottner, D., et al., Effects of support stimulation on human soleus fiber characteristics during exposure to “dry” immersion, J. Gravitational Physiol., 2004, vol. 11, no. 2, pp. 137–138.

    Google Scholar 

  7. Ogneva, I.V., Ponomareva, E.V., Kartashkina, N.L., et al., Decrease of contractile properties and transversal stiffness of single fibers in human soleus after 7-day “dry” immersion, Acta Astronaut., 2011, vol. 68, pp. 1478–1485.

    Article  Google Scholar 

  8. Mitarai, G., Mano, T., Mori, S., and Jijiwa, H., Electromyographic study on human standing posture in experimental hypograve state, Annu. Rep. Res. Inst. Environ. Med., Nagoya Univ., 1972, vol. 19, pp. 1–9.

    CAS  Google Scholar 

  9. Miller, T.F., Saenko, I.V., Popov, D.V., et al., Effect of mechanical stimulation of the support zones of soles on the muscle stiffness in 7-day dry immersion, J. Gravitational Physiol., 2004, vol. 11, no. 2, pp. 135–136.

    Google Scholar 

  10. Kirenskaya, A.V., Kozlovskaya, I.B., and Sirota, M.G., Influence of the immersion hypokinesia on the characteristics of the rhythmic activity of soleus motor units, Fiziol. Chel., 1986, vol. 12, no. 1, pp. 617–632.

    Google Scholar 

  11. Kawano, F., Ishihara, A., Stevens, J.L., et al., Tensionand afferent input-associated responses of neuromuscular system of rats to hindlimb unloading and/or tenotomy, Am. J. Physiol.-Regul. Integr. Comp. Physiol., 2004, vol. 287, no. 1, pp. R76–86.

    Google Scholar 

  12. Ingalls, C.P., Warren, G.L., and Armstrong, R.B., Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading, J. Appl. Physiol., 1999, vol. 87, no. 1, pp. 386–390.

    Article  CAS  PubMed  Google Scholar 

  13. Ingalls, C.P., Wenke, J.C., and Armstrong, R.B., Time course changes in [Ca2+]i, force, and protein content in hindlimb-suspended mouse soleus muscles, Aviat. Space Environ. Med., 2001, vol. 72, no. 5, pp. 471–476.

    CAS  PubMed  Google Scholar 

  14. Shenkman, B.S. and Nemirovskaya, T.L., Calciumdependent signaling mechanisms and soleus fiber remodeling under gravitational unloading, J. Muscle Res. Cell. Motil., 2008, vol. 29, pp. 221–230.

    Article  CAS  PubMed  Google Scholar 

  15. Enns, D.L. and Belcastro, A.N., Early activation and redistribution of calpain activity in skeletal muscle during hindlimb unweighting and reweighting, Can. J. Physiol. Pharmacol., 2006, vol. 84, pp. 601–609.

    Article  CAS  PubMed  Google Scholar 

  16. Enns, D.L., Raastad, T., Ugelstad, I., and Belcastro, A.N., Calpain/calpastatin activities and substrate depletion patterns during hindlimb unweighting and reweighting in skeletal muscle, Eur. J. Appl. Physiol., 2007, vol. 100, no. 4, pp. 445–455.

    Article  CAS  PubMed  Google Scholar 

  17. Ogneva, I.V., The transversal stiffness of fibers and the desmin content in the leg muscles of rats under gravitational unloading of various duration, J. Appl. Physiol., 2010, vol. 109, no. 6, pp. 1702–1709.

    Article  CAS  PubMed  Google Scholar 

  18. Michetti, M., Salamino, F., Melloni, E., and Pontremoli, S., Reversible inactivation of calpain isoforms by nitric oxide, Biochem. Biophys. Res. Commun., 1995, vol. 207, no. 3, pp. 1009–1014.

    Article  CAS  PubMed  Google Scholar 

  19. Samengo, G., Avik, A., Fedor, B., et al., Age-related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain S-nitrosylation that increase myofibril degradation and sarcopenia, Aging Cell, 2012, vol. 11, no. 6, pp. 1036–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tidball, J.G., Lavergne, E., Lau, K.S., et al., Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle, Am. J. Physiol., 1998, vol. 275, pp. 260–266.

    Article  Google Scholar 

  21. Sandonà, D., Desaphy, J.F., Camerino, G.M., et al., Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission, PLoS One, 2012, vol. 7, no. 3, p. e33232.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rudnick, J., Püttmann, B., Tesch, P.A., et al., Differential expression of nitric oxide synthases (NOS 1–3) in human skeletal muscle following exercise countermeasure during 12 weeks of bed rest, FASEB J., 2004, vol. 8, no. 11, pp. 1228–1230.

    Article  Google Scholar 

  23. Sun, L.W., Blottner, D., Luan, H.Q., et al., Bone and muscle structure and quality preserved by active versus passive muscle exercise on a new stepper device in 21 days tail-suspended rats, J. Musculoskeletal Neuronal Interact., 2013, vol. 13, no. 2, pp. 166–177.

    CAS  Google Scholar 

  24. Lomonosova, Yu.N., Kalamkarov, G.R., Bugrova, A.E., Shevchenko, T.F., Kartashkina, N.L., Lysenko, E.A., Shenkman, B.S., and Nemirovskaya, T.L., Role of NO-synthase in regulation of protein metabolism of stretched rat m. soleus muscle during functional unloading, Biochemistry, 2012, vol. 77, no. 2, pp. 208–216.

    CAS  PubMed  Google Scholar 

  25. Lainé, R. and de Montellano, P.R., Neuronal nitric oxide synthase isoforms alpha and mu are closely related calpain-sensitive proteins, Mol. Pharmacol., 1998, vol. 54, no. 2, pp. 305–312.

    Article  PubMed  Google Scholar 

  26. Crosbie, R.H., Barresi, R., and Campbell, K.P., Loss of sarcolemma nNOS in sarcoglycan-deficient muscle, FASEB J., 2002, vol. 16, no. 13, pp. 1786–1791.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, Z.P., McConell, G.K., Belinda, J., et al., AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation, Am. J. Physiol. Endocrinol. Metab., 2000, vol. 279, pp. E1202–1206.

    Article  CAS  PubMed  Google Scholar 

  28. Hinchee-Rodriguez, K., Garg, N., Venkatakrishnan, P., et al., Neuronal nitric oxide synthase is phosphorylated in response to insulin stimulation in skeletal muscle, Biochem. Biophys. Res. Commun., 2013, vol. 435, no. 3, pp. 501–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakao, R., Hirasaka, K., Goto, J., et al., Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading, Mol. Cell Biol., 2009, vol. 29, no. 17, pp. 4798–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murphy, R.M., Verburg, E., and Lamb, G.D., Ca2+ activation of diffusible and bound pools of μ-calpain in rat skeletal muscle, J. Physiol., 2006, vol. 576, no. 2, pp. 595–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayot, M., Michaud, A., Koechlin, C., et al., Skeletal muscle microbiopsy: a validation study of a minimally invasive technique, Eur. Respir. J., 2005, vol. 25, pp. 431–440.

    Article  CAS  PubMed  Google Scholar 

  32. Sánchez-Ruiloba, L., Aicart-Ramos, C., García-Guerra, L., et al., Protein kinase D interacts with neuronal nitric oxide synthase and phosphorylates the activatory residue Serine1412, PLoS One, 2014, vol. 9, no. 4, p. e95191.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Han, B., Zhu, M.J., Ma, C., and Du, M., Rat hindlimb unloading down-regulates insulin like growth factor-1 signaling and AMP-activated protein kinase, and leads to severe atrophy of the soleus muscle, Appl. Physiol. Nutr. Metab., 2007, vol. 32, no. 6, pp. 1115–1123.

    Article  CAS  PubMed  Google Scholar 

  34. Hilder, T.L., Baer, L.A., Fuller, P.M., et al., Insulinindependent pathways mediating glucose uptake in hindlimb-suspended skeletal muscle, J. Appl. Physiol., 2005, vol. 99, no. 6, pp. 2181–2188.

    Article  CAS  PubMed  Google Scholar 

  35. Ruderman, N.B., Keller, C., Richard, A.M., et al., Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention of the metabolic syndrome, Diabetes, 2006, vol. 55, no. 2, pp. 48–54.

    Article  Google Scholar 

  36. Hardie, D.G. and Ashford, M.L., AMPK: regulating energy balance at the cellular and whole body levels, Physiology (Bethesda), 2014, vol. 29, no. 2, pp. 99–107.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vil’chinskaya.

Additional information

Original Russian Text © N.A. Vil’chinskaya, T.M. Mirzoev, Yu.N. Lomonosova, I.B. Kozlovskaya, B.S. Shenkman, 2016, published in Aviakosmicheskaya i Ekologicheskaya Meditsina, 2016, Vol. 50, No. 1, pp. 28–34.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vil’chinskaya, N.A., Mirzoev, T.M., Lomonosova, Y.N. et al. Effect of Short-term Dry Immersion on Proteolytic Signaling in the Human Soleus Muscle. Hum Physiol 43, 787–792 (2017). https://doi.org/10.1134/S0362119717070209

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717070209

Keywords

Navigation