Skip to main content
Log in

Bone Mineral Density and Molecular Genetic Markers of Bone Remodeling in Blood of Cosmonauts after Long-term Missions on Board the International Space Station

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The results of the investigation of the bone system of 24 Russian cosmonauts after long-term (124–199 days) missions on board the International space station (ISS) are presented. Functional adaptation of the bone system involves some complex changes in the metabolic activity of osteoblasts and osteoclasts, such as alterations of the serum concentrations of osteocalcin, tartrate-resistant acid phosphatase (TRAP), osteoprotegerin, and the activator ligand of the receptor of nuclear factor kappa-B (RANKL); in addition, in peripheral blood leucocytes, there are changes in the expression of genes regulating the development of skeletal system and bone mineral metabolism. Significant variability in the mineral density of femoral neck and molecular genetic markers studied after long-term space flights indicates individual variability of the balance of the processes of bone remodeling, bone formation and resorption. Significant bone mass losses in the femoral bone of cosmonauts are associated with more pronounced changes in the markers of metabolic activity of osteoclasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oganov, V.S. and Grigor’ev, A.I., Mechanisms of human osteopenia and some peculiarities of bone metabolism in weightlessness conditions, Ross. Fiziol. Zh. im. I.M. Sechenova, 2012, vol. 98, no. 3, p.395.

    CAS  PubMed  Google Scholar 

  2. Oganov, V.S., Kostnaya sistema, nevesomost’ i osteoporoz (Bone System, Weightlessness, and Osteoporosis), Voronezh: Nauchnaya Kniga, 2014, 2nd ed.

    Google Scholar 

  3. Sagalovsky, S., Bone remodeling: cellular-molecular biology and cytokine RANKL-RANK-Osteoprotegerin (OPG) system and growth factors, Crimean J. Exp. Clin. Med., 2013, vol. 3, p.36.

    Google Scholar 

  4. Rozhnova, O.M., Falameeva, O.V., and Sadovoi, M.A., Pathophysiology of bone tissue in osteoporosis (review), Mezhd. Zh. Prikl. Fundam. Issled., 2015, no. 9 (4), p.666.

    Google Scholar 

  5. Cameron, D.A., The Biochemistry and Physiology of Bone. The Ultrastructure of Bone, New York: Academic, 2012, vol. 1, p.191.

    Google Scholar 

  6. Scott, J.P.R., Sale, C., Greeves, J.P., et al., The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise, J. Appl. Physiol., 2011, vol. 110, no. 2, p.423.

    Article  CAS  PubMed  Google Scholar 

  7. Niu, T. and Xu, X., Candidate genes for osteoporosis, Am. J. Pharmacogenomics, 2001, no. 1, p.11.

    Article  CAS  PubMed  Google Scholar 

  8. Morukov, B.V., Nichiporuk, I.A., Tret’yakov, V.S., and Larina, I.M., Biochemical markers of bone tissue metabolism in cosmonauts after a prolonged spaceflight, Hum. Physiol., 2005, vol. 31, no. 6, p.684.

    Article  CAS  Google Scholar 

  9. Chen, G., Deng, C., and Li, Y.P., TGF-β and BMP signaling in osteoblast differentiation and bone formation, Int. J. Biol. Sci., 2012, vol. 8, no. 2, p.272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Canalis, E., Giustina, A., and Bilezikian, J.P., Mechanisms of anabolic therapies for osteoporosis, N. Engl. J. Med., 2007, vol. 357, no. 9, p.905.

    Article  CAS  PubMed  Google Scholar 

  11. Isenmann, S., Arthur, A., Zannettino, A.C., et al., TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment, Stem Cells, 2009, vol. 27, no. 10, p. 2457.

    Article  CAS  PubMed  Google Scholar 

  12. Chetina, E.V., Maslova, K.A., Demin, N.V., et al., The gene expression associated with osteoblast differentia tion and the mammalian target of rapamycin (mTOR) in the blood of patients with osteoporosis, Nauchno-Prakt. Revmatol., 2011, no. 5, p.18.

    Google Scholar 

  13. Blaber, E.A., Dvorochkin, N., Lee, C., et al., Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21, PLoS One, 2013, vol. 8, no. 4, p. e61372.

    CAS  PubMed  Google Scholar 

  14. Oganov, V.S. and Bogomolov, V.V., Human bone system in microgravity conditions. Review of research data, hypothesis, and predictability of the bone system state in extended (exploration) missions, Aviakosm. Ekol. Med., 2009, vol. 43, no. 1, p.3.

    CAS  Google Scholar 

  15. Buravkova, L.B., Gershovich, P.M., Gershovich, J.G., and Grigor’ev, A.I., Mechanisms of gravitational sensitivity of osteogenic precursor cells, ActaNaturae, 2010, vol. 2, no. 1, p.30.

    Google Scholar 

  16. Gershovich, P.M., Gershovich, Yu.G., and Buravkova, L.B., The role of multipotential mesenchymal stromal cells of bone marrow in adaptation of osteogenic cells to microgravity, Ross. Fiziol. Zh. im. I.M. Sechenova, 2010, vol. 96, no. 4, p.406.

    CAS  PubMed  Google Scholar 

  17. Gershovich, P.M., Gershovich, Yu.G., and Buravkova, L.B., Molecular genetic features of human mesenchymal stem cells after their osteogenic differentiation under the conditions of microgravity, Hum. Physiol., 2013, vol. 39, no. 5, p.540.

    Article  CAS  Google Scholar 

  18. Gershovich, P.M., Gershovich, J.G., Zhambalova, A.P., et al., Cytoskeletal proteins and stem cell markers gene expression in human bone marrow masenchymal stromal cells after different periods of simulated microgravity, Acta Astronaut., 2012, vol. 70, p. 36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Rykova.

Additional information

Original Russian Text © V.E. Novikov, M.P. Rykova, E.N. Antropova, T.A. Berendeeva, S.A. Kalinin, G.Yu. Vassilieva, S.A. Ponomarev, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 6, pp. 88–94.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.E., Rykova, M.P., Antropova, E.N. et al. Bone Mineral Density and Molecular Genetic Markers of Bone Remodeling in Blood of Cosmonauts after Long-term Missions on Board the International Space Station. Hum Physiol 43, 686–692 (2017). https://doi.org/10.1134/S0362119717060068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717060068

Keywords

Navigation