Skip to main content
Log in

Experience of experimental modelling of Huntington’s disease

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by choreic involuntary movements, decline in cognitive functions, behavioral disturbances, and progressive neuronal death affecting primarily the striatum. The fatal nature of HD makes it important to search for new effective methods of its treatment, which requires the development of experimental models of the disease. These models can be created using 3-nitropropionic acid (3-NPA), which is a neurotoxin causing typical changes in motor skills and memory impairment in animals due to induction of oxidative stress, impaired glutathione defense, and destruction of striatal cells. We modeled HD in rats by chronic daily intraperitoneal administration of 3-NPA for 17 days. Systemic administration of a low dose of 3-NPA (10 mg/kg) induced hyperactivity of animals in the open field test (including movement redundancy as a hyperkinesia analogue) and had no effect on the behavior of the animals in the X-maze test. On the contrary, rats administered with a toxic dose of 3-NPA (20 mg/kg) exhibited a significant decrease in their motor activity and a cognitive decline in behavioral tests. A histopathological analysis revealed damage and loss of neurons and a decrease in expression of dopaminergic markers (tyrosine hydroxylase and plasma membrane dopamine transporter) in the striatum. The gliotoxic effect of 3-NPA was also found in the striatum, which was confirmed by immunohistochemical staining for astrocytic proteins: GFAP, glutamine synthetase, and aquaporin-4. This HD model may be helpful for testing new experimental therapies at different stages of HD-like neurodegeneration, including therapies based on cell neurotransplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Illarioshkin, S.N., Age-related memory and attention disorders: mechanisms of development and possibilities of neurotransmission therapy, Nevrol. Zh., 2007, no. 2, p. 34.

    Google Scholar 

  2. Illarioshkin, S.N., Ivanova-Smolenskaya, I.A., and Markova, E.D., A new mechanism of mutation in man: expansion of trinucleotide repeats (review), Genetika, 1995, vol. 31, p. 1478.

    CAS  PubMed  Google Scholar 

  3. Aketa, S., Nakase, H., Kamada, Y., et al., Chemical preconditioning with 3-nitropropionic acid in gerbil hippocampal slices: therapeutic window and the participation of adenosine receptor, Exp. Neurol., 2000, vol. 166, no. 2, p. 385.

    Article  CAS  PubMed  Google Scholar 

  4. Alexi, T., Hughes, P.E., Faull, R.L., and Williams, C.E., 3-Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration, Neuroreport, 1998, vol. 9, no. 11, p. R57.

    Article  CAS  PubMed  Google Scholar 

  5. Alston, T.A., Mela, L., and Bright, H.J., 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 9, p. 3767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beal, M.F., Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?, Ann. Neurol., 1992, vol. 31, no. 2, p. 119.

    Article  CAS  PubMed  Google Scholar 

  7. Beal, M.F., Brouillet, E., Jenkins, B.G., et al., Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid, J. Neurosci., 1993, vol. 13, no. 10, p. 4181.

    CAS  PubMed  Google Scholar 

  8. Becker, S. and Lim, J., A computational model of prefrontal control in free recall: strategic memory use in the California Verbal Learning Task, J. Cognit. Neurosci., 2003, vol. 15, no. 6, p. 821.

    Article  Google Scholar 

  9. Blesa, J. and Przedborski, S., Parkinson’s disease: animal models and dopaminergic cell vulnerability, Front. Neuroanat., 2014, vol. 8, p. 155.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Borlongan, C.V., Koutouzis, T.K., Freeman, T.B., et al., Hyperactivity and hypoactivity in a rat model of Huntington’s disease: the systemic 3-nitropropionic acid model, Brain Res. Protoc., 1997, vol. 1, p. 253.

    Article  CAS  Google Scholar 

  11. Brouillet, E., Conde, F., Beal, M., and Hantraye, P., Replicating Huntington’s desease phenotype in experimental animals, Prog. Neurobiol., 1999, vol. 59, no. 5, p. 427.

    Article  CAS  PubMed  Google Scholar 

  12. Brouillet, E., Jacquard, C., Bizat, N., and Blum, D., 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease, J. Neurochem., 2005, vol. 95, no. 6, p. 1521.

    Article  CAS  PubMed  Google Scholar 

  13. Brouillet, E., Jenkins, B., Hyman, B., et al., Agedependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid, J. Neurochem., 1993, vol. 60, p. 356.

    Article  CAS  PubMed  Google Scholar 

  14. Choo, Y.S., Johnson, G.V., MacDonald, M., et al. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release, Hum. Mol. Genet., 2004, vol. 13, p. 1407.

    Article  CAS  PubMed  Google Scholar 

  15. Fukuda, A.M. and Badaut, J., Aquaporin 4: a player in cerebral edema and neuroinflammation, J. Neuroinflammation, 2012, vol. 9, p. 279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herrera-Mundo, N. and Sitges, M., Mechanisms underlying striatal vulnerability to 3-nitropropionic acid, J. Neurochem., 2010, vol. 114, no. 2, p. 597.

    Article  CAS  PubMed  Google Scholar 

  17. Kendall, A., Hantraye, P., and Palfi, S., Striatal tissue transplantation in non-human primates, Prog. Brain Res., 2000, vol. 127, p. 381.

    Article  CAS  PubMed  Google Scholar 

  18. Kozina, E.A., Khakimova, G.R., Khaindrava, V.G., et al., Tyrosine hydroxylase expression and activity in nigrostriatal dopaminergic neurons of MPTP-treated mice at the presymptomatic and symptomatic stages of parkinsonism, J. Neurol. Sci., 2014, vol. 340, nos. 1–2, p. 198.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar, P. and Kumar, A., Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: A novel nitric oxide mechanism, Food Chem. Toxicol., 2009, vol. 47, no. 10, p. 2522.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, P. and Kumar, A., Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s-like symptoms in rats: Possible role of nitric oxide, Behav. Brain Res., 2010, vol. 206, no. 1, p. 38.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, P., Padi, S.S., Naidu, P.S., and Kumar, A., Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: possible antioxidant mechanisms, Fundam. Clin. Pharmacol., 2007, vol. 21, no. 3, p. 297.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, W.T., Yin, H.S., and Shen, Y.Z., The mechanisms of neuronal death produced by mitochondrial toxin 3-nitropropionic acid: the roles of N-methyl-D-aspartate glutamate receptors and mitochondrial calcium overload, Neuroscience, 2002, vol. 112, p. 707.

    Article  CAS  PubMed  Google Scholar 

  23. Mehrotra, A. and Sandhir, R., Mitochondrial cofactors in experimental Huntington’s disease: behavioral, biochemical and histological evaluation, Behav. Brain Res., 2014, vol. 261, p. 345.

    Article  CAS  PubMed  Google Scholar 

  24. Nishino, H., Hida, H., Kumazaki, M., et al., The striatum is the most vulnerable region in the brain to mitochondrial energy compromise: a hypothesis to explain its specific vulnerability, J. Neurotrauma, 2000, vol. 17, no. 3, p. 251.

    Article  CAS  PubMed  Google Scholar 

  25. Nishino, H., Kumazaki, M., Fukuda, A., et al., Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: involvement of dopamine toxicity, Neurosci. Res., 1997, vol. 27, no. 4, p. 343.

    Article  CAS  PubMed  Google Scholar 

  26. Ouary, S., Bizat, N., Altairac, S., and Menetrat, H., Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies, Neuroscience, 2000, vol. 97, no. 3, p. 521.

    Article  CAS  PubMed  Google Scholar 

  27. Pandey, M., Borah, A., Varghese, M., et al., Striatal dopamine level contributes to hydroxyl radical generation and subsequent neurodegeneration in the striatum in 3-nitropropionic acid-induced Huntington’s disease in rats, Neurochem. Int., 2009, vol. 55, p. 431.

    Article  CAS  PubMed  Google Scholar 

  28. Patocka, J., Bielavský, J., Cabal, J., and Fusek, J., 3-Nitropropionic acid and similar nitro-toxins, Acta Med. (Hradec Kralove), 2000, vol. 43, no. 1, p. 9.

    CAS  Google Scholar 

  29. Ramaswany, S., McBride, J., and Kordower, J., Animal models of Huntington’s desease, ILAR J., 2007, vol. 48, no. 4, p. 356.

    Article  Google Scholar 

  30. Sandhir, R. and Mehrotra, A., Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease, Biochim. Biophys. Acta, 2013, vol. 1832, no. 3, p. 421.

    Article  CAS  PubMed  Google Scholar 

  31. Sandhir, R., Sood, A., Mehrotra, A., and Kamboj, S., N-Acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acidinduced Huntington’s disease, Neurodegener. Dis., 2012, vol. 9, no. 3, p. 145.

    Article  CAS  PubMed  Google Scholar 

  32. Stelmashook, E.V., Isaev, N.K., Lozier, E.R., et al., Role of glutamine in neuronal survival and death during brain ischemia and hypoglycemia, Int. J. Neurosci., 2011, vol. 121, p. 415.

    Article  CAS  PubMed  Google Scholar 

  33. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group, Cell, 1993, vol. 72, no. 6, p. 971.

  34. Tunez, I., Tasset, I., Perez-De, La., Cruz, V., and Santamaria, A., 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future, Molecules, 2010, vol. 15, p. 878.

    Article  CAS  PubMed  Google Scholar 

  35. Van Raamsdonk, J.M., et al., Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease, Hum. Mol. Genet., 2005, vol. 14, no. 24, p. 3823.

    Article  PubMed  Google Scholar 

  36. Villalba, R.M. and Smith, Y., Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys, J. Comp. Neurol., 2011, vol. 519, no. 5, p. 989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wüllner, U., Young, A.B., Penney, J.B., and Beal, M.F., 3-Nitropropionic acid toxicity in the striatum, J. Neurochem., 1994, vol. 63, no. 5, p. 1772.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Stavrovskaya.

Additional information

Original Russian Text © A.V. Stavrovskaya, D.N. Voronkov, N.G. Yamshchikova, A.S. Ol’shanskiy, R.M. Khudoerkov, S.N. Illarioshkin, 2015, published in Annaly Klinicheskoi i Eksperimental’noi Nevrologii, 2015, Vol. 9, No. 3, pp. 49–55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stavrovskaya, A.V., Voronkov, D.N., Yamshchikova, N.G. et al. Experience of experimental modelling of Huntington’s disease. Hum Physiol 42, 898–904 (2016). https://doi.org/10.1134/S0362119716080120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716080120

Keywords

Navigation