Skip to main content
Log in

Visual priming and perception of small pictures in a scene with multiscale objects

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Biederman et al. [1, 2] have shown that the priming effect does not depend on the difference between the angular sizes of the test stimulus and the primer. However, these two and other similar studies investigated only a small range of the angular sizes of stimuli. Vakhrameeva et al. [3] have shown that there exist two perceptionally different size ranges: perception of the objects with an angular size varying between 1–1.5 and 50 degrees was found to be invariant, but for the objects whose angular size is less than 1–1.5 degrees, their perception is no longer invariant. In this study, the presence of the priming effect has been investigated in the match-to-sample task with such a difference in the angular sizes of the primer and test stimuli that the sizes of the primer (about 4 degrees) and the test stimulus (about 0.5 degrees) belonged to two different size ranges. The sample stimulus was presented with and without noise superposition. It has been shown that the priming effect is suppressed when the size difference between the primer and the test stimulus is large. A congruent primer can have a positive impact on the recognition of the test objects, but this occurs under the viewing conditions complicated by noise superposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biederman, I. and Cooper, E., Size invariance in visual object priming, J. Exp. Psychol., Hum. Percep. Perform., 1992, vol. 18, no. 1, p. 121.

    Article  Google Scholar 

  2. Fiser, J., Biederman, I., and Bar, M., Invariance of long-term visual priming to scale, reflection, translation, and hemisphere, Vision Res., 2001, vol. 41, no. 2, p. 221.

    CAS  PubMed  Google Scholar 

  3. Vakhrameeva, O.A., Shelepin, Yu.E., Mezentsev, A.Yu., and Pronin, S.V., Studies of the perception of incomplete outline images of different sizes, Neurosci. Behav. Physiol., 2009, vol. 39, no. 9, p. 841.

    Article  CAS  PubMed  Google Scholar 

  4. Kiefer, M., Morschett, A., Schonfeldt-Lecuona, C., et al., Altered time course of unconscious response priming in schizophrenia patients, Schizophr. Res., 2013, vol. 150, nos. 2–3, p. 590.

    Article  PubMed  Google Scholar 

  5. Jahshan, C., Wynn, J.K., Breitmeyer, B.G., and Green, M.F., Nonconscious and conscious color priming in schizophrenia, J. Psych. Res., 2012, vol. 46, no. 10, p. 1312.

    Article  Google Scholar 

  6. Falikman, M.V. and Koifman, A.Ya., Types of priming in the researches of perception and perceptional consideration, Vestn. Mosk. Univ., Ser. 14: Psikhol., 2005, no. 3, p.86.

    Google Scholar 

  7. Agafonov, A.Yu. and Karpinskaya, V.Yu., Does the unconsciously hint help to solve the problem? The study of priming effects, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2010, vol. 12, no. 3, p. 1.

    Google Scholar 

  8. Kalinin, S.A., Gerasimenko, N.Yu., Slavutskaya, A.V., and Mikhailova, E.S., Behavioral and electrographical features of recognition of forward-masked complex images: The effect of categorical similarity of the target and masking stimuli, Hum. Physiol., 2014, vol. 40, no. 4, p. 355.

    Article  Google Scholar 

  9. Kopeikina, E.A., Choroshich, V.V., Aleksandrov, A.Yu., and Ivanova, V.Yu., Effects of unconscious perception of acoustic stimuli on event-related potential parameters, Hum. Physiol., 2015, vol. 41, no. 3, p. 242.

    Article  Google Scholar 

  10. Tsuchiya, N., Koch, C., Gilroy, L.A., and Blake, R., Depth of interocular suppression associated with continuous flash suppression, and binocular rivalry, J. Vision, 2006, vol. 6, no. 10, p. 1068.

    Google Scholar 

  11. Faivre, N. and Kouider, S., Multi-feature objects elicit nonconscious priming despite crowding, J. Vision, 2011, vol. 11, no. 2, p. 1.

    Article  Google Scholar 

  12. Bondarko, V.M., Danilova, M.V., Solnushkin, S.D., and Chikhman, V.N., Estimation of the sizes of inhibitory areas in crowding effect in the periphery, Hum. Physiol., 2014, vol. 40, no. 3, p. 244.

    Article  Google Scholar 

  13. Tsuchiya, N. and Koch, C., Continuous flash suppression reduces negative afterimages, Nat. Neurosci., 2005, vol. 8, no. 8, p. 1096.

    Article  CAS  PubMed  Google Scholar 

  14. Landry, M., Appourchaux, K., and Raz, A., Elucidating unconscious processing with instrumental hypnosis, Front. Psychol., 2014, vol. 5, p. 785.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang, E., Brascamp, J., Kang, M.-S., and Blake, R., On the use of continuous flash suppression for the study of visual processing outside of awareness, Front. Psychol., 2014, vol. 5, p. 724.

    PubMed  PubMed Central  Google Scholar 

  16. Dubois, J. and Faivre, N., Invisible,but how? The depth of unconscious processing as inferred from different suppression techniques, Front. Psychol., 2014, vol. 5, p. 1117.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gayet, S., Van der Stigchel, S., and Paffen, C.L.E., Breaking continuous flash suppression: competing for consciousness on the presemantic battle field, Front. Psychol., 2014, vol. 5, Article 460.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sterzer, P., Stein, T., Ludwig, K., Rothkirch, M., and Hesselmann, G., Neural processing of visual information under interocular suppression: a critical review, Front. Psychol., 2014, vol. 5, Article 453.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Faivre, N., Berthet, V., and Kouider, S., Sustained invisibility through crowding and continuous flash suppression: a comparative review, Front. Psychol., 2014, vol. 5, Article 475.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Faivre, N. and Kouider, S., Increased sensory evidence reverses nonconscious priming during crowding, J. Vision, 2011, vol. 11, no. 16, p. 1.

    Google Scholar 

  21. Barbot, A. and Kouider, S., Longer is not better: nonconscious overstimulation reverses priming influences under interocular suppression, Atten., Percept., Psychophys., 2012, vol. 74, no. 1, p. 174.

    Article  Google Scholar 

  22. Dill, M. and Edelman, S., Imperfect invariance to object translation in the discrimination of complex shapes, Perception, 2001, vol. 30, no. 6, p. 707.

    Article  CAS  PubMed  Google Scholar 

  23. Dufau, S., GrainGer, J., and Holcomb, P.J., An ERP investigation of location invariance in masked repetition priming, Cognit., Affective Behav. Neurosci., 2008, vol. 8, no. 2, p. 222.

    Article  Google Scholar 

  24. Eddy, M.D. and Holcomb, P.J., Electrophysiological evidence for size invariance in masked picture repetition priming, Brain Cognit., 2009, vol. 71, no. 3, p. 397.

    Article  Google Scholar 

  25. Eddy, M.D. and Holcomb, P.J., Invariance to rotation in depth measured by masked repetition priming is dependent on prime duration, Brain Res., 2011, vol. 18, no. 1424, p. 38.

    Article  Google Scholar 

  26. Farell, B. and Pelli, D.J., Can we attend to large and small at the same time?, Vision Res., 1993, vol. 33, no. 18, p. 2757.

    Article  CAS  PubMed  Google Scholar 

  27. Polyak, S., The Vertebrate Visual System, Chicago: Univ. of Chicago Press, 1957.

    Google Scholar 

  28. Wandell, B.A., Foundations of Vision, Sunderland: Sinauer Associates Inc., 1995.

    Google Scholar 

  29. Ivanishko, Yu.A., Nesterov, E.A., Miroshnikov, V.V., and Lotoshnikov, M.A., Topography of retina and pathological objects, Perv. Vseros. sem. Tez. dokl. i stenogrammy diskussii (First All-Russ. Seminar. Summaries of Reports and Transcripts of Discussions), Rostov-on-Don, 2004, p. 9.

    Google Scholar 

  30. Isik, L., Meyers, E.M., Leibo, J.Z., and Poggio, T., The dynamics of invariant object recognition in the human visual system, J. Neurophysiol., 2014, vol. 111, no. 1, p. 91.

    Article  PubMed  Google Scholar 

  31. Shelepin, Yu.E., Chikhman, V.N., Vakhrameeva, O.A., et al., Invariance in visual perception, Eksp. Psikhol., 2008, vol. 1, no. 1, p. 7.

    Google Scholar 

  32. Vakhrameeva, O.A., Sukhinin, M.V., Moiseenko, G.A., et al., The study of perception thresholds depending on the geometry of the fovea, Sens. Sist., 2013, vol. 27, no. 2, p. 122.

    Google Scholar 

  33. Krasil’nikov, N.N. and Shelepin, Yu.E., Masking as a result of mismatching filtration in the human visual system, Fiziol. Chel., 1996, vol. 22, no. 5, p. 99.

    Google Scholar 

  34. Polat, U., Mizobe, K., Pettet, M.W., et al., Collinear stimuli regulate visual responses depending on cell’s contrast threshold, Nature, 1998, vol. 391, no. 6667, p. 580.

    Article  CAS  PubMed  Google Scholar 

  35. Segaert, K., Weber, K., de Lange, F.P., et al. The suppression of repetition enhancement: a review of fMRI studies, Neuropsychologia, 2013, vol. 51, no. 1, p. 59.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Vakhrameeva.

Additional information

Original Russian Text © O.A. Vakhrameeva, A.K. Harauzov, S.V. Pronin, E.Y. Malakhova, Y.E. Shelepin, 2016, published in Fiziologiya Cheloveka, 2016, Vol. 42, No. 5, pp. 39–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakhrameeva, O.A., Harauzov, A.K., Pronin, S.V. et al. Visual priming and perception of small pictures in a scene with multiscale objects. Hum Physiol 42, 499–507 (2016). https://doi.org/10.1134/S0362119716050182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716050182

Keywords

Navigation