Skip to main content
Log in

Psychophysiological features of adolescents

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Behavioral characteristics of adolescents as determined by brain neurophysiological and neurochemical processes during puberty are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebedinskaya, K.S. and Lebedinskii, V.V., Narusheniya psikhicheskogo razvitiya v detskom i podrostkovom vozraste (Disorders of Mental Development in Childhood and Adolescent Age), Moscow: Triksta, 2011.

    Google Scholar 

  2. Michaud, P.-A. and Frombonne, E., ABC of adolescents: Common mental health problems, Biomed. J., 2005, vol. 330, no. 7495, p. 835.

    Google Scholar 

  3. Farber, D.A. and Bezrukikh, M.M., Methodological aspects of studies of the physiology of child development, Hum. Physiol., 2001, vol. 27, no. 5, p. 515.

    Article  Google Scholar 

  4. Bezrukikh, M.M., Son’kin, V.D., and Farber, D.A., Theoretical basis of the study of the physiology of child development, in Fiziologiya razvitiya rebenka (Physiology of Child Development), Bezrukikh, M.M. and Farber, D.A., Eds., Moscow: MPSI; MODEK, 2010, p. 10.

    Google Scholar 

  5. Bezrukikh, M.M., Son’kin, V.D., and Farber, D.A., Vozrastnaya fiziologiya (Developmental Physiology), Moscow: Akademiya, 2002.

    Google Scholar 

  6. Fiziologiya podrostka (Physiology of Adolescents), Farber, D.A., Ed., Moscow: Pedagogika, 1988.

    Google Scholar 

  7. Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka (Brain Development and Formation of Cognitive Activity in Children), Farber, D.A. and Bezrukikh, M.M., Eds., Moscow; Voronezh: MPSI; MODEK, 2009.

    Google Scholar 

  8. Gogtay, N., Giedd, J., Lusk, L. et al., Dynamic mapping of human cortical development during childhood through early adulthood, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 21, p. 8174.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lenroot, R., Gogtay, N., Greenstein, D., et al., Sexual dimorphism of brain development. Trajectories during childhood and adolescence, NeuroImage, 2007, vol. 36, no. 4, p. 1065.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Casey, B., Getz, S., and Galvan, A., The adolescents brain, Dev. Rev., 2008, vol. 28, no. 1, p. 62.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Giedd, J., Keshavan, M., and Paus, T., Why do many psychiatric disorders emerge during adolescents?, Nat. Rev. Neurosci., 2008, vol. 9, no. 12, p. 947.

    PubMed Central  PubMed  Google Scholar 

  12. Dumontheil, I., Burgess, P., and Blakemore, S.-J., Development of rostral prefrontal cortex and cognitive behavioral disorders, Dev. Med. Child Neurol., 2008, vol. 50, no. 3, p. 168.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Asato, M., Terwilliger, R., Woo, J., and Luna, B., White matter integrity. White matter development in adolescence: a DTI study, Cereb. Cortex, 2010, vol. 20, no. 9, p. 2122.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bava, S., Thayer, R., Jacobus, J., et al., Longitudinal characterization of white matter maturation during adolescence, Brain Res., 2010, vol. 1327, p. 38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Machinskaya, R.I., Controlling brain systems and their morphological and functional maturation in children, in Mozgovye mekhanizmy formirovaniya poznavatel’noi deyatel’nosti v predshkol’nom i mladshem shkol’nom vozraste (Brain Mechanisms of the Formation of Cognitive Activity in the Adolescent and Primary School Age), Machinskaya, R.I and Farber, D.A, Eds., Moscow: MPSI; MODEK, 2014, p. 157.

    Google Scholar 

  16. Klingberg, T., Development of superior frontal-intraparietal network for visuo-spatial working memory, Neuropsychologia, 2006, vol. 44, no. 11, p. 2127.

    Article  Google Scholar 

  17. Olesen, P.J., Nagy, Z., Westerberg, H., et al., Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network, Cognit. Brain Res., 2003, vol. 18, no. 1, p. 48.

    Article  Google Scholar 

  18. Chiang, M.-C., Barysheva, M., Shuttuck, D., et al., Genetics of brain fiber architecture and intellectual performance, J. Neurosci., 2009, vol. 29, no. 7, p. 2212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Madden, D.J., Spaniol, J., Costello, M.C., et al., Cerebral white matter integrity mediates adult age differences in cognitive performance, J. Cognit. Neurosci., 2009, vol. 21, no. 2, p. 289.

    Article  Google Scholar 

  20. Sisk, C. and Zehr, J., Pubertal hormones organize the adolescent brain and behavior, Front. Neuroendocrinol., 2005, vol. 26, nos. 3–4, p. 163.

    Article  CAS  PubMed  Google Scholar 

  21. Coates, J., Gurnell, M., and Sarnyai, Z., From molecule to market: steroid hormones and financial risk taking, Philos. Trans. R. Soc. London Biol. Sci., 2010, vol. 365, no. 1538, p. 331.

    Article  CAS  Google Scholar 

  22. Schulz, K., Molenda-Figueira, H., and Sisk, C., Back to the future: the organizational-activational hypothesis adapted to puberty and adolescents, Horm. Behav., 2009, vol. 55, no. 5, p. 597.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Cyrenne, D.-L. and Brown, G., Effect of suppressing gonadal hormones on response to novel objects in adolescent rats, Horm. Behav., 2011, vol. 60, no. 5, p. 625.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Vermeersch, H., Sjoen, G., Kaufman, J., et al., The role of testosterone in aggressive and nonaggressive risk-taking in adolescent boys, Horm. Behav., 2008, vol. 53, no. 3, p. 463.

    Article  CAS  PubMed  Google Scholar 

  25. Segalowitz, S. and Davis, P., Charting the maturation of the frontal lobe: an electrophysiological strategy, Brain Cognit., 2004, vol. 55, no. 1, p. 116.

    Article  CAS  Google Scholar 

  26. Rubia, K., Smith, A., Woolley, J., et al., Progressive increase of fronto-striatal brain activation from childhood to adulthood during event-related tasks of cognitive control, Hum. Brain Mapp., 2006, vol. 27, no. 12, p. 973.

    Article  PubMed  Google Scholar 

  27. Luna, B., Padmanabhan, A., and O’Hearn, K., What has fMRI told us about the development of cognitive control through adolescence?, Brain Cognit., 2010, vol. 72, no. 1, p. 101.

    Article  Google Scholar 

  28. Somerville, L., Hare, T., and Casey, B., Fronto-striatal maturation predicts cognitive control failure to appetitive cues in adolescents, J. Cognit. Neurosci., 2011, vol. 23, no. 9, p. 2123.

    Article  Google Scholar 

  29. Andrews-Hanna, J., Mackiewicz, K., Claus, E., et al., Cognitive control in adolescents: neural underpinnings and relation to self-report behaviors, PLoS One, 2011, vol. 6, no. 6, p. e21598.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Emond, V., Joyal, C., and Poissant, H., Structural and functional neuroanatomy of ADHD, Encephale, 2009, vol. 35, no. 2, p. 107.

    Article  CAS  PubMed  Google Scholar 

  31. Eshel, N., Nelson, E., Blair, J., et al., Neural substrates of choice selection in adults and adolescents: development of ventrolateral and anterior cingulate cortices, Neuropsychologia, 2007, vol. 45, no. 6, p. 270.

    Article  Google Scholar 

  32. Op de Macks, Z., Gunther, M., Overgaauw, B., et al., Testosteron levels correspond with increased ventral striatum activation in response to monetary rewards in adolescents, Dev. Cognit. Neurosci., 2011, vol. 1, no. 4, p. 506.

    Article  Google Scholar 

  33. Blum, K., Braverman, E., Holder, J., et al., Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviors, J. Psychoactive Drugs, 2000, vol. 32Suppl. I-IV, p. 1.

    Article  Google Scholar 

  34. Blum, K., Chen, A., Braverman, E., et al., ADHD and reward deficiency syndrome, Neuropsychiatr. Dis. Treat., 2008, vol. 4, no. 5, p. 893.

    PubMed Central  PubMed  Google Scholar 

  35. Marsden, Ch., Dopamine: the rewarding years, Brit. J. Pharmacol., 2006, vol. 147, no. 1, p. 136.

    Google Scholar 

  36. Wahlstrom, D., Collins, T., White, T., et al., Developmental changes in DA neurotransmission in adolescents: behavioral implications and issues in assessment, Brain Cognit., 2010, vol. 72, no. 1, p. 146.

    Article  Google Scholar 

  37. Chambers, R., Taylor, J., and Potenza, M., Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability, Am. J. Psychiatry, 2003, vol. 160, no. 6, p. 1041.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ernst, M. and Mueller, S., The adolescent’s brain: insights from functional neuroimaging research, Dev. Neurobiol., 2008, vol. 78, no. 6, p. 724.

    Google Scholar 

  39. Steinberg, L., A social neuroscience perspective on adolescents risk taking, Dev. Rev., 2008, vol. 28, no. 1, p. 78.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Somerville, L., Jones, R., and Casey, B., A time of change: a behavioral and neural correlates of adolescents sensitivity to appetitive and aversive environmental cues, Brain Cognit., 2010, vol. 72, no. 1, p. 124.

    Article  Google Scholar 

  41. Van Leijenhorst, L., Gunther Moor, B., Op de Macks, Z., et al., Adolescent risky decision-making: neurocognitive development of reward and control regions, NeuroImage, 2010, vol. 51, no. 1, p. 345.

    Article  PubMed  Google Scholar 

  42. Martin, L. and Potts, G., Impulsivity in decision making: an ERP investigation, Pers. Indiv. Differ., 2009, vol. 46, no. 3, p. 303.

    Article  Google Scholar 

  43. Barbalat, G., Domenech, P., Vernet, M., et al., Risk taking in adolescence: a neuroeconomic approach, Encephale, 2010, vol. 36, no. 2, p. 147.

    Article  CAS  PubMed  Google Scholar 

  44. Spielberg, J., Olino, T., Forbes, E., et al., Exciting fear in adolescence: does pubertal development alter threat processing?, Dev. Cognit. Neurosci., 2014, vol. 8, p. 86.

    Article  Google Scholar 

  45. Romer, D., Betancourt, L., Brodsky, N., et al., Does adolescent’s risk taking imply weak executive functions? A prospective study of relations between working memory performance, impulsivity and risk taking in early adolescence, Dev. Sci., 2011, vol. 14, no. 5, p. 1119.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Blakemore, S., The social brain in adolescence, Nat. Rev. Neurosci., 2008, vol. 9, no. 4, p. 267.

    Article  CAS  PubMed  Google Scholar 

  47. Golarai, G., Liberman, A., Yoon, J., et al., Differential development of the ventral visual cortex extends through adolescence, Front. Hum. Neurosci., 2009, vol. 3, p. 80.

    PubMed Central  Google Scholar 

  48. Atique, B., Erb, M., Gharabaghi, A., et al., Task-specific activity and connectivity within the mentalizing network during emotion and intention mentalizing, NeuroImage, 2011, vol. 55, no. 4, p. 1899.

    Article  PubMed  Google Scholar 

  49. Saxe, R., Uniquely human social cognition, Curr. Opin. Neurobiol., 2006, vol. 16, no. 2, p. 235.

    Article  CAS  PubMed  Google Scholar 

  50. Sebastian, C., Burnett, S., and Blakemore, S., Development of self-concept during adolescence, Trends Cognit. Sci., 2008, vol. 12, no. 11, p. 441.

    Article  Google Scholar 

  51. Segalowitz, S., The development of individual differences in medial frontal cortex and self-regulation, in Fiziologiya razvitiya cheloveka (Physiology of Human Development) (Proc. Int. Conference, Moscow, 2009, Nov. Issled. Vozrastn. Fiziol., 2009, no. 2, p. 12.

    Google Scholar 

  52. Dumontheil, I., Apperly, I., and Blakemore, S., Online usage of theory of mind continues to develop in late adolescence, Dev. Sci., 2010, vol. 13, no. 2, p. 331.

    Article  PubMed  Google Scholar 

  53. Blakemore, S., Development of the social brain in adolescents, J. Soc. Med., 2012, vol. 105, no. 3, p. 111.

    Article  Google Scholar 

  54. Burnett, S., Thompson, S., Bird, G., and Blakemore, S., Pubertal development of the understanding of social emotions: implication for education, Learn. Indiv. Differ., 2011, vol. 21, no. 6, p. 681.

    Article  Google Scholar 

  55. Goddings, A.-L., Burnett Heyes, S., Bird, G., et al., The relationship between puberty and social emotion processing, Dev. Sci., 2012, vol. 15, no. 6, p. 801.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Klapwijk, E., Goddings, A., Burnett Heyes, S., et al., Increased functional connectivity with puberty in the mentalizing network involved in social emotion processing, Horm. Behav., 2013, vol. 64, no. 2, p. 314.

    Article  PubMed  Google Scholar 

  57. Choudhury, S., Blakmore, S., and Charman, T., Social cognitive development during adolescence, Soc. Cognit. Affective Neurosci., 2006, vol. 1, no. 3, p. 165.

    Article  Google Scholar 

  58. Sebastian, C., Fontain, N., Bird, G., et al., Neural processing associated with cognitive and affective theory of mind, Soc. Cognit. Affective Neurosci., 2012, vol. 7, no. 1, p. 53.

    Article  Google Scholar 

  59. Shamay-Tsoory, S., Aharon-Peretz, J., and Perry, D., Two systems for empathy: a double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal cortex lesions, Brain, 2009, vol. 32, no. 3, p. 617.

    Article  Google Scholar 

  60. Shamay-Tsoory, S., The neural basis for empathy, Neuroscientist, 2011, vol. 17, no. 1, p. 18.

    Article  PubMed  Google Scholar 

  61. Koenigs, M., Young, L., Adolphs, R., et al., Damage to the vmPFC increases utilitarian moral judgments, Nature, 2007, vol. 446, no. 7138, p. 908.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Steinberg, L., Commentary: a behavioral scientist looks at the science of adolescent brain development, Brain Cognit., 2010, vol. 72, no. 1, p. 160.

    Article  Google Scholar 

  63. Fillmore, M., Ostling, E., Martin, C., et al., Acute effects of alcohol on inhibition control and information processing in high and low SS, Drug Alcohol Depend., 2009, vol. 100, nos. 1–2, p. 91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Squeglia, L., Jacobus, J., and Tapert, S., The influence of substance use on adolescent brain development, Clin. EEG Neurosci., 2009, vol. 40, no. 1, p. 31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Dubrovinskaya.

Additional information

Original Russian Text © N.V. Dubrovinskaya, 2015, published in Fiziologiya Cheloveka, 2015, Vol. 41, No. 2, pp. 113–122.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovinskaya, N.V. Psychophysiological features of adolescents. Hum Physiol 41, 209–217 (2015). https://doi.org/10.1134/S0362119715020061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119715020061

Keywords

Navigation