Skip to main content
Log in

Hypoxic stress as an activation trigger of multipotent mesenchymal stromal cells

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Multipotent mesenchymal stromal (stem) cells (MSCs) are a heterogeneous cell population of different commitment and are actively involved in the physiological and regenerative tissue remodeling. MSC mobilization from local tissue depots and their activation at sites of tissue damage are the key issues in the study of mechanisms of MSC functional activity implementation. Short-term hypoxic stress that is considered as a constitutive feature of the damage foci, may contribute to the activation MSC potential. This review is analysed the data on the impact of short (less than 72 h) hypoxic stress ex vivo on the viability and functional activity of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caplan, A.I. and Bruder, S.P., Mesenchymal stem cells: building blocks for molecular medicine in the 21st century, Trends Mol. Med., 2001, vol. 7, no. 6, p. 259.

    Article  CAS  PubMed  Google Scholar 

  2. Bianco, P., Riminucci, M., Gronthos, S., and Robey, P.G., Bone marrow stromal stem cells: nature, biology, and potential applications, Stem Cells, 2001, vol. 19, no. 3, p. 180.

    Article  CAS  PubMed  Google Scholar 

  3. Kolf, C.M., Cho, E., and Tuan, R.S., Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation, Arthritis Res., 2007, vol. 9, no. 1, p. 204.

    Article  Google Scholar 

  4. Murphy, M.B., Moncivais, K., and Caplan, A.I., Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine, Exp. Mol. Med., 2013, vol. 45, p. e54.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Silva, L., Fontes, A.M., Covas, D.T., and Caplan, A.I., Mechanisms involved in the therapeutic properties of mesenchymal stem cells, Cytokine Growth Factor Rev., 2009, vol. 20, nos. 5–6, p. 419.

    Google Scholar 

  6. Buravkova, L.B., Andreeva, E.R., and Grigor’ev, A.I., The impact of oxygen in physiological regulation of human multipotent mesenchymal cell functions, Hum. Physiol., 2012, vol. 38, no. 4, p. 444.

    Article  CAS  Google Scholar 

  7. Caplan, A.I., Adult mesenchymal stem cells for tissue engineering versus regenerative medicine, J. Cell Physiol., 2007, vol. 213, no. 2, p. 341.

    Article  CAS  PubMed  Google Scholar 

  8. Dimarino, A.M., Caplan, A.I., and Bonfield, T.L., Mesenchymal stem cells in tissue repair, Front. Immunol., 2013, vol. 4, p. 201.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dong, F. and Caplan, A.I., Cell transplantation as an initiator of endogenous stem cell-based tissue repair, Curr. Opin. Organ Transplant., 2012, vol. 17, no. 6, p. 670.

    Article  CAS  PubMed  Google Scholar 

  10. de Almeida, D.C., Donizetti-Oliveira, C., Barbosa-Costa, P., et al., In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury, Clin. Biochem. Rev., 2013, vol. 34, no. 3, p. 131.

    PubMed Central  PubMed  Google Scholar 

  11. Tottey, S., Corselli, M., Jeffries, E.M., et al., Extracellular matrix degradation products and low-oxygen conditions enhance the regenerative potential of perivascular stem cells, Tissue Eng., 2011, vol. 17, nos. 1–2, p. 37.

    Article  CAS  Google Scholar 

  12. Hunt, T.K., Hopf, H., and Hussain, Z., Physiology of wound healing, Adv. Skin Wound Care, 2000, vol. 13, p. 6.

    CAS  PubMed  Google Scholar 

  13. Rhim, T., Lee, D.Y., and Lee, M., Hypoxia as a target for tissue specific gene therapy, J. Control Release, 2013, vol. 172, no. 2, p. 484.

    Article  CAS  PubMed  Google Scholar 

  14. Rochefort, G.Y., Delorme, B., Lopez, A., et al., Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia, Stem Cells, 2006, vol. 24, no. 10, p. 2202.

    Article  CAS  PubMed  Google Scholar 

  15. Corselli, M., Chen, C.W., Crisan, M., et al., Perivascular ancestors of adult multipotent stem cells, Arterioscler. Thromb. Vasc. Biol., 2010, vol. 30, no. 6, p. 1104.

    Article  CAS  PubMed  Google Scholar 

  16. Crisan, M., Chen, C.W., Corselli, M., et al., Perivascular multipotent progenitor cells in human organs, Ann. N. Y. Acad. Sci., 2009, vol. 1176, p. 118.

    Article  CAS  PubMed  Google Scholar 

  17. Caplan, A.I. and Correa, D., The MSC: an injury drugstore, Cell Stem Cell, 2011, vol. 9, no. 1, p. 11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zhu, W., Chen, J., Cong, X., et al., Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells, Stem Cells, 2006, vol. 24, no. 2, p. 416.

    Article  PubMed  Google Scholar 

  19. Chacko, S.M., Ahmed, S., Selvendiran, K., et al., Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells, Am. J. Physiol. Cell Physiol., 2010, vol. 299, no. 6, p. 1562.

    Article  Google Scholar 

  20. Peterson, K.M., Aly, A., Lerman, A., et al., Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress, Life Sci., 2011, vol. 88, nos. 1–2, p. 65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zhang, W., Su, X., Gao, Y., et al., Berberine protects mesenchymal stem cells against hypoxia-induced apoptosis in vitro, Biol. Pharm. Bull., 2009, vol. 32, no. 8, p. 1335.

    Article  CAS  PubMed  Google Scholar 

  22. Nie, Y., Han, B.M., Liu, X.B., et al., Identification of microRNAs involved in hypoxia- and serum deprivation-induced apoptosis in mesenchymal stem cells, Int. J. Biol. Sci., 2011, vol. 7, no. 6, p. 762.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Chang, W., Song, B.W., Lim, S., et al., Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury, Stem Cells, 2009, vol. 27, no. 9, p. 2283.

    Article  CAS  PubMed  Google Scholar 

  24. Deschepper, M., Oudina, K., David, B., et al., Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia, J. Cell Mol. Med., 2011, vol. 15, no. 7, p. 1505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Li, Y., Xue, F., Xu, S.Z., et al., Lycopene protects bone marrow mesenchymal stem cells against ischemiainduced apoptosis in vitro, Eur. Rev. Med. Pharmacol. Sci., 2014, vol. 11, p. 1625.

    Google Scholar 

  26. Rosova, I., Dao, M., Capoccia, B., et al., Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells, Stem Cells, 2008, vol. 26, no. 8, p. 2173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Guzy, R.D. and Schumacker, P.T., Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia, Exp. Physiol., 2006, vol. 91, no. 5, p. 807.

    Article  CAS  PubMed  Google Scholar 

  28. Guzy, R.D., Hoyos, B., Robin, E., et al., Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing, Cell Metab., 2005, vol. 1, no. 6, p. 401.

    Article  CAS  PubMed  Google Scholar 

  29. Busletta, C., Novo, E., Valfre, Di., Bonzo, L., et al., Dissection of the biphasic nature of hypoxia-induced mitogenic action in bone marrow-derived human mesenchymal stem cells, Stem Cells, 2011, vol. 29, no. 6, p. 952.

    Article  CAS  PubMed  Google Scholar 

  30. Lee, S.H., Lee, Y.J., Song, C.H., et al., Role of FAK phosphorylation in hypoxia-induced hMSCs migration: involvement of VEGF as well as MAPKS and eNOS pathways, Am. J. Physiol. Cell Physiol., 2010, vol. 298, no. 4, p. 847.

    Article  Google Scholar 

  31. Lavrentieva, A., Majore, I., Kasper, C., and Hass, R., Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells, Cell Commun. Signal., 2010, vol. 16, no. 8, p. 18.

    Article  Google Scholar 

  32. Buravkova, L.B., Rylova, Y.V., Andreeva, E.R., et al., Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells, Biochim. Biophys. Acta-General Subjects, 2013, vol. 1830, no. 10, p. 4418.

    Article  CAS  Google Scholar 

  33. Annabi, B., Lee, Y.T., Turcotte, S., et al., Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation, Stem Cells, 2003, vol. 21, no. 3, p. 337.

    Article  CAS  PubMed  Google Scholar 

  34. Wei, N., Yu, S.P., Gu, X., et al., Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice, Cell Transplant, 2013, vol. 22, no. 6, p. 977.

    Article  PubMed  Google Scholar 

  35. Liu, H., Liu, S., Li, Y., et al., The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury, PLoS One, 2012, vol. 7, no. 4, p. e34608.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hung, S.C., Pochampally, R.R., Hsu, S.C., et al., Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo, PLoS One, 2007, vol. 2, no. 5, p. e416.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Efimenko, A., Starostina, E., Kalinina, N., and Stolzing, A., Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning, J. Transl. Med., 2011, vol. 9, p. 10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Tamama, K., Kawasaki, H., Kerpedjieva, S.S., et al., Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition, J. Cell Biochem., 2011, vol. 112, no. 3, p. 804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Buravkova, L.B., Grinakovskaya, O.S., Andreeva, E.R., et al., Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under a lower oxygen tension, Cell Tissue Biol., 2009, vol. 3, no. 1, p. 23.

    Article  Google Scholar 

  40. Buravkova, L.B. and Anokhina, E.B., Effect of hypoxia on stromal precursors from rat bone marrow at the early stage of culturing, Bull. Exp. Biol. Med., 2007, vol. 143, no. 4, p. 386.

    Article  Google Scholar 

  41. Buravkova, L.B., Anokhina, E.B., Zhambalova, A.P., and Grinakovskaya, O.S., Proliferation, viability, and phenotypes of cultured mesenchimal progenitor cells in hypoxia, Tsitologiya, 2006, vol. 48, no. 9, p. 748.

    Google Scholar 

  42. Potier, E., Ferreira, E., Meunier, A., et al., Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death, Tissue Engin., 2007, vol. 13, no. 6, p. 1325.

    Article  CAS  Google Scholar 

  43. Crisostomo, P.R., Wang, Y., Markel, T., et al., Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism, Am. J. Physiol. Cell Physiol., 2008, vol. 94, no. 3, p. 675.

    Article  Google Scholar 

  44. Rubina, K.A., Kalinina, N.I., Efimenko, A.Yu., et al., The mechanism of stimulation of angiogenesis in ischemic myocardium through adipose tissue stromal cells, Kardiologiya, 2010, no. 50, p. 51.

    Google Scholar 

  45. Chung, H.M., Won, C.H., and Sung, J.H., Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential, Expert Opin. Biol. Ther., 2009, vol. 9, no. 12, p. 1499.

    Article  CAS  PubMed  Google Scholar 

  46. Martin-Rendon, E., Hale, S.J., Ryan, D., et al., Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia, Stem Cells, 2007, vol. 25, no. 4, p. 1003.

    Article  CAS  PubMed  Google Scholar 

  47. Hu, X., Yu, S.P., Fraser, J.L., et al., Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis, J. Thorac. Cardiovasc. Surg., 2008, vol. 135, no. 4, p. 799.

    Article  CAS  PubMed  Google Scholar 

  48. Li, Z., Wei, H., and Deng, L., Expression and secretion of interleukin-1b, tumour necrosis factor-a and interleukin-10 by hypoxia- and serum-deprivation-stimulated mesenchymal stem cells, FEBS J., 2010, vol. 277, no. 18, p. 3688.

    Article  CAS  PubMed  Google Scholar 

  49. Chen, G., Nayan, M., and Duong, M., Marrow stromal cells for cell-based therapy: the role of antiinflammatory cytokines in cellular cardiomyoplasty, Ann. Thorac. Surg., 2010, vol. 90, no. 1, p. 190.

    Article  PubMed  Google Scholar 

  50. Semenza, G.L., HIF-1 and mechanisms of hypoxia sensing, Curr. Opin. Cell Biol., 2001, vol. 13, no. 2, p. 167.

    Article  CAS  PubMed  Google Scholar 

  51. Semenza, G.L., Hypoxia-inducible factors in physiology and medicine, Cell, 2012, vol. 148, no. 3, p. 399.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Pogodina, M.V. and Buravkova, L.B., Expression of hypoxia-associated genes in multipotent mesenchymal stromal cells during long-term cultivation at low oxygen, Dokl. Biol. Sci., 2014, vol. 458, p. 310.

    Article  CAS  PubMed  Google Scholar 

  53. Kanichai, M., Ferguson, D., Prendergast, P.J., and Campbell, V.A., Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha, J. Cell Physiol., 2008, vol. 216, no. 3, p. 708.

    Article  CAS  PubMed  Google Scholar 

  54. Wenger, R.H., Cellular adaptation to hypoxia: O2sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression, FASEB J., 2002, vol. 16, no. 10, p. 1151.

    Article  CAS  PubMed  Google Scholar 

  55. Lisy, K. and Peet, D.J., Turn me on: regulating HIF transcriptional activity, Cell Death Differ., 2008, vol. 15, no. 4, p. 642.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Andreeva.

Additional information

Original Russian Text © E.R. Andreeva, M.V. Pogodina, L.B. Buravkova, 2015, published in Fiziologiya Cheloveka, 2015, Vol. 41, No. 2, pp. 123–129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, E.R., Pogodina, M.V. & Buravkova, L.B. Hypoxic stress as an activation trigger of multipotent mesenchymal stromal cells. Hum Physiol 41, 218–222 (2015). https://doi.org/10.1134/S0362119715020024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119715020024

Keywords

Navigation