Skip to main content
Log in

Frequency thresholds for stereopsis in the case of alternative presenting the left and right images of stereopair in children with ophthalmopathology

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

In this paper, we report the results of estimating the minimum frequency of alternative left-right stereopair image presentation necessary to obtain stereopsis in children with ophthalmopathology including or not including binocular disorders. It was found that all subjects without binocular disorders had stereo-effect with both linear and random-dot images. However, for the stereopsis with random-dot stereotests, all children required a higher frequency of alternation than for the stereopsis with simple linear images. It was found that approximately 90% of children with binocular disorders were able to perceive depth when simple linear stereoscopic images were presented alternatively to the two eyes. However, these patients required a higher frequency of alternation than the children with normal binocular functions. Only a small part (approximately 30%) of children with binocular disorders was capable of stereopsis with complex random-dot images, and they required a fairly high frequency (more than 30 Hz) of alternation for success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ogle, K.N., Stereoscopic depth perception and exposure delay between images to the two eyes, J. Opt. Soc. Am., 1963, vol. 53, pp. 1296. doi: 10.1364/JOSA.53.001296

    Article  CAS  PubMed  Google Scholar 

  2. Rozhkova, G.I. and Vasiljeva, N.N., A computer-aided method for the evaluation of fusional reserves with objective control of fusion break, Hum. Physiol., 2010, vol. 36, no. 3, p. 364.

    Article  Google Scholar 

  3. Chernysheva, S.G. and Samedova, D.Kh., Secondary esotropia: clinical factors of development, Ross. Oftal’mol. Zh., 2010, no. 2, p. 35.

    Google Scholar 

  4. Kashchenko, T.P. and Aklaeva, N.A., Concomitant strabismus in children, in Izbrannye lektsii po detskoi oftal’mologii (Selected Lectures on Pediatric Ophthalmology), Neroev, V.V., Ed., Moscow: GEOTAR Media, 2009, pp. 62–75.

    Google Scholar 

  5. Chaumont, P., Contal, A., Grandperret, R., et al., Lunettesá cristaux liquides pour le traitement de certains strabismes, Revue Europénne de Technologie Biomédicale, 1982, vol. 4, p. 305.

    Google Scholar 

  6. Rychkova, S.I., Shchuko, A.G., and Malyshev, V.V., Binarimeter and liquid crystal glasses in postoperative rehabilitation of children with divergent concomitant strabismus, Ross. Pediatr. Oftal’mol., 2008, no. 3, p. 34.

    Google Scholar 

  7. Rychkova, S. and Ninio, J., Alternation frequency thresholds for stereopsis reveal different types of stereoscopic difficulties, Perception, 2009, vol. 38, p. 59.

    Google Scholar 

  8. Rychkova, S.I., Rabitchev, I.E., and Ninio, J., Stereoscopic memory beyond stimuli persistence: the multiplicative effect of binocular intervals, Perception, 2010, vol. 39, p. 161.

    Google Scholar 

  9. Tyler, C.W., Sensory processing of binocular disparity, in Vergence Eye Movements: Basic and Clinical Aspects, Boston, 1983, p. 199.

    Google Scholar 

  10. Ninio, J., Au Coer de la Memoire, Paris: Odile Jacob, 2011, p. 54.

    Google Scholar 

  11. Hollingworth, A., Visual memory for natural scenes, in Visual Memory, New York: Oxford Univ. Press, 2008, p. 123.

    Chapter  Google Scholar 

  12. Harris, J.M., Stereoscopic volume perception: effects of local scene arrangement across space and depth, Perception, 2013, vol. 42, p. 13.

    Google Scholar 

  13. O’Shea, R.P. and Corballis, P.M., Binocular rivalry between complex stimuli in split-brain observers, Brain and Mind, 2001, vol. 2, p. 151.

    Article  Google Scholar 

  14. Blake, R. and Logothetis, N.K., Visual competition, Nature Reviews: Neuroscience, 2002, vol. 3, p. 13.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, X. and He, S., Temporal characteristics of binocular rivalry: visual field asymmetries, Vision Res., 2003, vol. 43, p. 2207.

    Article  PubMed  Google Scholar 

  16. Vidal-Naquet, M. and Gepshtein, S., Binocular matching by adaptive correlation, Perception, 2010, vol. 39, p. 107.

    Google Scholar 

  17. Wilcox, L.M. and Allison, R.S., Coarse-fine dichotomies in human stereopsis, Vision Res., 2009, vol. 49, p. 2653.

    Article  PubMed  Google Scholar 

  18. Read, J.C. and Cumming, B.G., Effect of interocular delay on disparity-selective V1 neurons: relationship to stereoacuity and the Pulfrich effect, J. Neurophysiol., 2005, vol. 94, p. 1541. doi: 10.1152/jn.01177.2004

    Article  PubMed Central  PubMed  Google Scholar 

  19. Farell, B., Chai, Y.-C., and Fernandez, J., Projected disparity, not horizontal disparity, predicts stereo depth of 1-D patterns, Vision Res., 2009, vol. 49, p. 2209.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Devisme, C., Drobe, B., Monot, A., and Droulez, J., Stereoscopic depth perception in peripheral field and global processing of horizontal disparity gradient pattern, Vision Res., 2008, vol. 48, p. 753.

    Article  PubMed  Google Scholar 

  21. Rogers, B., Depth constancy and frontal-plane scaling in the absence of vertical disparities, Perception, 2012, vol. 41, p. 16.

    Google Scholar 

  22. Gillam, B., Chambers, D., and Russo, T., Postfusional latency in slant perception and the primitives of stereopsis, J. Exper. Psychol. Hum. Percep. Perform., 1988, vol. 14, p. 163.

    Article  CAS  Google Scholar 

  23. Ninio, J., L’Empreinte des Sens, Paris: Odile Jacob, 2011.

    Google Scholar 

  24. Erkelens, C., Perceived slant of rectangular grids viewed on slanted screens, Perception, 2012, vol. 41, p. 16.

    Google Scholar 

  25. Julesz, B., Binocular depth perception without familiarity cues, Science, 1964, vol. 145, pp. 356–362. doi: 10.1126/science.145.3630.356

    Article  CAS  PubMed  Google Scholar 

  26. Gheorghui, E. and Erkelens, C.J., Differences in perceived depth for temporally correlated and uncorrelated dynamic random-dot stereograms, Vision Res., 2005, vol. 45, p. 1603.

    Article  Google Scholar 

  27. Ninio, J., Designing visually rich, nearly random textures, Spatial Vision, 2007, vol. 20, p. 561.

    Article  PubMed  Google Scholar 

  28. Caziot, B., Rolfs, M., and Backus, B., The orienting of attention across binocular disparity, Perception, 2013, vol. 42, p. 14.

    Google Scholar 

  29. Rychkova, S.I. and Ninio, J., Alternation frequency thresholds for stereopsis as a technique for exploring stereoscopic difficulties, i-Perception, 2011, vol. 2, p. 1. doi.org/10.1068/i0398

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Rychkova.

Additional information

Original Russian Text © S.I. Rychkova, 2015, published in Fiziologiya Cheloveka, 2015, Vol. 41, No. 2, pp. 5–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rychkova, S.I. Frequency thresholds for stereopsis in the case of alternative presenting the left and right images of stereopair in children with ophthalmopathology. Hum Physiol 41, 115–122 (2015). https://doi.org/10.1134/S0362119715010120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119715010120

Keywords

Navigation