Skip to main content
Log in

Mechanisms of orientation sensitivity in the human visual system: Part I. Behavioral characteristics of orientation sensitivity. Influence of the task type, experimental conditions, and gender

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Orientation sensitivity in the human visual system was studied in three experiments. In the first experiment, 134 subjects determined orientation of the segments of short lines by selecting it from a set of reference orientations (the Benton test). In the second experiment, 41 subjects of those who passed the Benton test determined the proximity of oblique lines to cardinal axes and to the angle of 45 degrees. In the third experiment, the same subjects identified the orientation of 0, 90, 45, and 135 degrees. It was shown that the cardinal orientations (vertical and horizontal) were determined more accurately and faster than the oblique ones. In this case, the erroneous estimates of oblique lines were associated with the effect of “tilt normalization,” which was manifested in the bias towards basic axes. The type of errors was dependent on test conditions: at normal illumination and availability of additional visual information about the cardinal axes, the errors towards horizontal prevailed; and at low light conditions, the errors towards vertical were dominated. Significant gender differences were found: women were worse than men in performing the tasks that require accurate estimation of orientation (the first and third experiments), which indicates the deficiency of metric abilities in them. It is assumed that in women the most pronounced effect of intermediate orientations is associated with gender differences in brain organization of internal reference frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nubel, D.H. and Wiesel, T.N., Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol., 1962, vol. 160, p. 106.

    Google Scholar 

  2. Shevelev, I.A., Kakie kharakteristiki izobrazheniya vydelyayutsya neironami pervichnoi zritel’noi kory koshki? (What image characteristics are recognized by neurons in the cat’s primary visual cortex?), Ross. Fiziol. Zh. im. I.M. Sechenova, 1999, vol. 85, no. 6, p. 767.

    CAS  PubMed  Google Scholar 

  3. Benton, A.L., Varney, N.R., and Hamsker, K.D., Visuospatual judgment. A clinical test, Arch. Neurol., vol. 35, no. 6, p. 364.

  4. Lindgren, S.D. and Benton, A.L., Developmental patterns of visuospatial judgment, J. Pediatr. Psychol., 1980, vol. 5, no. 2, p. 217.

    Article  CAS  PubMed  Google Scholar 

  5. Collaer, M.L. and Nelson, J.D., Large visuospatial sex difference in line judgment: Possible role of attentional factors, Brain Cognit., 2002, vol. 49, p. 1.

    Article  Google Scholar 

  6. Caparelli-Daquer, E.M., Oliveira-Souza, R., and Moreira-Filho P.F.M., Judgment of line orientation depends on gender, education, and type of error, Brain Cognit., 2009, vol. 69, p. 116.

    Article  Google Scholar 

  7. Goyette S.R., McCoy, J.G., Kennedy, A., and Sullivan M., Sex differences on the judgment of line orientation task: A function of landmark presence and hormonal status, Physiol. Behav., 2012, vol. 105, p. 1045.

    Article  CAS  PubMed  Google Scholar 

  8. Tarr, M.J. and Pinker, S., Mental rotation and orientation-dependence in shape recognition, Cognit. Psychol., 1989, vol. 21, no. 2, p. 233.

    Article  CAS  PubMed  Google Scholar 

  9. Asakura, N. and Inui, T., Disambiguation of mental rotation by spatial frames of reference, i-Perception, 2011, vol. 2, no. 5, p. 477.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Nori, R. and Giusberri, F., Cognitive styles: Errors in directional judgments, Perception, 2003, vol. 32, no. 3, p. 307.

    Article  PubMed  Google Scholar 

  11. Luyat, M., Mobarek, S., Leconte, C., and Gentaz E., The plasticity of gravitational reference frame and the subjective vertical: Peripheral visual information affects the oblique effect, Neurosci. Lett., 2005, vol. 385, p. 215.

    Article  CAS  PubMed  Google Scholar 

  12. Luyat, M., Noel, M., Thery, V., and Gentaz E., Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt, BMC Neurosci., 2012, vol. 13, article no. 28. doi: 10.1186/1471-2202-13-28

  13. Darling, W.G. and Pizzimenti, M.A., A coordinate system for visual motion perception, Exp. Brain Res., 2001, vol. 141, p. 174.

    Article  CAS  PubMed  Google Scholar 

  14. Hugdahl, K., Thomsen, T., and Ersland, L., Sex differences in visuo-spatial processing: An fMRI study of mental rotation, Neuropsychologia, 2006, vol. 44, p. 1575.

    Article  PubMed  Google Scholar 

  15. Andersen, N.E., Dahmani, L., Konishi, K., and Bohbot, V.D., Eye tracking, strategies, and sex differences in virtual navigation, Neurobiol. Learn. Mem., 2012. vol. 97, p. 81.

    Article  PubMed  Google Scholar 

  16. Ocklenburg, S., Hirnstein, M., Ohmann, H.A., and Hausmann M., Mental rotation does not account for sex differences in left-right confusion, Brain Cognit., 2011, vol. 76, p. 166.

    Article  Google Scholar 

  17. Dragoi, V., Turcu, C.M., and Sur M., Stability of cortical responses and the statistics of natural scenes, Neuron, 2001, vol. 32, p. 1181.

    Article  CAS  PubMed  Google Scholar 

  18. Lipshits, M.I., Internal reference frame for the representation and storage of visual information during standing, Human Physiol., 2011, vol. 37, p. 299.

    Article  Google Scholar 

  19. Darling, W.G. and Barlett, R., The visual perception coordinate system uses axes defined by the Earth, trunk, and vision, Perception, 2005, vol. 34, p. 17.

    PubMed  Google Scholar 

  20. Belopol’skii, V.I., Vzor cheloveka: mekhanizmy, modeli, funktsii (Human look: Mechanisms, models, and functions), Moscow: Institute of Psychology, Russian Academy of Sciences, 2007.

    Google Scholar 

  21. Wakita, M., Monkeys perceive the orientation of objects relative to the vertical axis, Anim. Cognit., 2012, vol. 15, no. 6, p. 1205.

    Article  Google Scholar 

  22. Collins, D.W. and Kimura, D., A large sex difference on a two-dimensional mental rotation task, Behav. Neurosci., 1997, vol. 111, p. 845.

    Article  CAS  PubMed  Google Scholar 

  23. Jordan, K., Wustenberg, T., Heinze, H.-J., Peters, M., and Jancke L., Women and men exhibit different cortical activation patterns during mental rotation tasks, Neuropsychologia, 2002, vol. 40, p. 2397.

    Article  PubMed  Google Scholar 

  24. Tzuriel, D. and Egozi, G., Gender differences in spatial ability of young children: The effects of training and processing strategies, Child Dev., 2010, vol. 81, p. 1417.

    Article  PubMed  Google Scholar 

  25. Georgopoulos, A.P., Whang, K., Georgopoulos, M.A.S., et al., Functional magnetic resonance imaging of visual object construction and shape discrimination: Relations among task, hemispheric lateralization, and gender, J. Cognit. Neurosci., 2001, vol. 13, p. 72.

    Article  CAS  Google Scholar 

  26. Iachini, T., Sergi, I., Ruggiero, G., and Gnisci, A., Gender differences in object location memory in a real three-dimensional environment, Brain Cognit., 2005, vol. 59, p. 52.

    Article  Google Scholar 

  27. Sato, H., Sando, I., and Takahashi, H., Computeraided three-dimensional measurement of the human vestibular apparatus, Otolaryngol.-Head Neck Surg., 1992, vol. 107, no. 3, p. 405.

    CAS  PubMed  Google Scholar 

  28. Barnett-Cowan, M., Dyde, R.T., Thompson, C., and Harris, L.R., Multisensory determinants of orientation perception: Task-specific sex differences, Eur. J. Neurosci., 2010, vol. 31, p. 1899.

    Article  CAS  PubMed  Google Scholar 

  29. Gur, R.C., Alsop, D., Glahn, D., et al, An fMRI study of sex differences in regional activation to a verbal and a spatial task, Brain and Language, 2000, vol. 74, p. 157.

    Article  CAS  PubMed  Google Scholar 

  30. Mikhailova, E.S., Slavutskaya, A.V., and Gerasimenko, N.Yu., Gender differences in the recognition of spatially transformed figures: Behavioral data and event-related potentials (ERPs), Neurosci. Lett., 2012, vol. 524, no. 2, p.74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Slavutskaya.

Additional information

Original Russian Text © A.V. Slavutskaya, N.Yu. Gerasimenko, E.S. Mikhailova, 2014, published in Fiziologiya Cheloveka, 2014, Vol. 40, No. 6, pp. 88–97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavutskaya, A.V., Gerasimenko, N.Y. & Mikhailova, E.S. Mechanisms of orientation sensitivity in the human visual system: Part I. Behavioral characteristics of orientation sensitivity. Influence of the task type, experimental conditions, and gender. Hum Physiol 40, 660–668 (2014). https://doi.org/10.1134/S0362119714050144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119714050144

Keywords

Navigation