Skip to main content
Log in

Study of local EEG specificities in children with mental development disorders using independent component analysis

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Baseline EEGs in the frequency range of 3–13 Hz in children with mental disorders of perinatal origin during wakefulness with the eyes open were analyzed using independent component analysis. In cases of severe mental retardation, a significant increase in the power density spectra of the θ band was revealed in the left-sided frontotemporal and right-sided temporal cortices, which allows us to consider these regions to be putative sources of slow activity and markers for a lesion or immaturity in the fronto-thalamic system, as well as for the temporal areas responsible for the auditory analysis and synthesis of speech signals and the integration of audio-visual information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grin-Yatsenko, V.A., Baas, Ineke, Ponomarev, V.A., and Kropotov, Ju.D. EEG power spectra at early stages of depressive disorders, J. Clin. Neurophysiol., 2009, vol. 26, no. 6, p. 281.

    Article  Google Scholar 

  2. Ponomarev, V.A. and Kropotov, Ju.D., Improving source localization of event-related potentials in the Go/NoGo task by modeling their cross-covariance structure, Hum. Physiol., 2013, vol. 39, no. 1, p. 27.

    Article  Google Scholar 

  3. Mamaichuk, I.I., Il’ina, M.N., Pomoshch’ psikhologa rebenku s zaderzhkoi psikhicheskogo razvitiya (Psychologist’s Help to a Mentally Retarded Child), St. Petersburg: Rech’, 2004.

    Google Scholar 

  4. Vigario, R.N., Extraction of ocular artifacts from EEG using independent component analysis, EEG Clin. Neurophysiol., 1997, vol. 103, p. 395.

    Article  CAS  Google Scholar 

  5. Pascual-Marqui, R.D., Standardized low resolution brain electromagnetic tomography (sLORETA): technical details, Meth. Find. Exp. Clin. Pharmacol., 2002, vol. 24D, p. 5.

    Google Scholar 

  6. Luriya, A.P., Vysshie korkovye funktsii cheloveka (Human Higher Cortical Functions), St. Petersburg: Piter, 2008.

    Google Scholar 

  7. Tsekhmistrenko, T.A., Vasil’eva, V.A., Shumeiko, N.S., and Chernykh, N.A., Structural transformations in the human cerebral cortex and cerebellum in the postnatal ontogenesis, in Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka (Development of the Brain and Formation of a Cognitive Activity in Children), Farber, D.A., Bezrukikh, M.M., Eds., Moscow: Mosk. Psikhol.-Sotsial. Inst., 2009, ch. 1, p. 9.

    Google Scholar 

  8. Ghajar, J. and Ivry, R.B., The predictive brain state: asynchrony in disorders of attention, Neuroscientist, 2009, vol. 15, no. 3, p. 232.

    Article  PubMed  Google Scholar 

  9. Gmehlin, D., Thomas, C., Weisbrod, M., et al., Development of brain synchronization within school-age-individual analysis of resting (α) coherence in a longitudinal data set, Clin. Neurophysiol., 2011, vol. 122, no. 10, p. 1973.

    Article  PubMed  Google Scholar 

  10. Kim, J., Woo, J., Park, Y.G., et al. Thalamic T-Type Ca2+-channels mediate frontal lobe dysfunctions caused by a hypoxia-like damage in the prefrontal cortex, J. Neurosci., 2011, vol. 31, no. 11, p. 4063.

    Article  CAS  PubMed  Google Scholar 

  11. Bressler, S.L. and Menon, V., Large-scale brain networks in cognition: emerging methods and principles, Trends Cogn. Sci., 2010, vol. 14, no. 6, p. 277.

    Article  PubMed  Google Scholar 

  12. Machinskaya, R.I. and Kurgansky, A.V., A comparative electrophysiological study of regulatory components of the working memory in adults and seven- to eight-year-old children: analysis of the EEG rhythm coherence, Hum. Physiol., 2012, vol. 38, no. 1, p. 1.

    Article  Google Scholar 

  13. Machinskaya, R.I. and Kurgansky, A.V., Frontal bilateral synchronous theta waves and the resting EEG coherence in children aged 7–8 and 9–10 with learning difficulties, Hum. Physiol., 2013, vol. 39, no. 1, p. 58.

    Article  Google Scholar 

  14. Farber, D.A. and Vildavsky, V.Yu., Heterogeneity and age dynamics of the alpha-rhythm of the electroencephalogram, Hum. Physiol., 1996, vol. 22, no. 5, p. 517.

    Google Scholar 

  15. Lukashevich, I.P., Machinskaya, R.I., and Fishman, M.N., Cerebral neurophysiological mechanisms of learning disabilities in children: structural analysis of the EEG, Hum. Physiol., 1998, vol. 24, no. 1, p. 11.

    Google Scholar 

  16. Edelman, G., The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function, Cambridge: MIT, 1978.

    Google Scholar 

  17. Lu, L., Leonard, C., Thompson, P.M., et al., Normal developmental changes in inferior frontal gray matter are associated with improvement in phonological processing: longitudinal MRI analysis, Cereb. Cortex, 2007, vol. 17, no. 5, p. 1092.

    Article  PubMed  Google Scholar 

  18. Shaitor, V.M., Distant consequences of perinatal nervous system damages in children, Doctoral (Med.) Dissertation, St. Petersburg, 2008.

    Google Scholar 

  19. Otellin, V.A., Khozhai, L.I., and Ordyan, N.E. Prenatal’nye stressornye vozdeistviya i razvivayushchiisya golovnoi mozg (adaptivnye mekhanizmy, neposredstvennye i otsrochennye effekty) (Prenatal Stressor Influences and the Developing Brain: Adaptive Mechanisms, Immediate and Postponed Effects), St. Petersburg: Desyatka, 2007.

    Google Scholar 

  20. Lukashevich, I.P., Popova, S.M., and Shklovskii, V.M., The role of damage to the cerebral subcortical divisions in the formation of alalia, Hum. Physiol., 2011, vol. 37, no. 5, p. 550.

    Article  Google Scholar 

  21. Klauchek, S.V. and Klitochenko, G.V., Specificities of bioelectrical activity of the brain in children with different forms of complications due to perinatal CNS lesions, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2006, vol. 106, no. 4, p. 43.

    CAS  PubMed  Google Scholar 

  22. Lebedinskii, V.V., Narusheniya psikhicheskogo razvitiya u detei v detskom vozraste (Mental Development Disorders in Childhood), Moscow: Akademiya, 2003.

    Google Scholar 

  23. Skvortsov, I.A., Bashina, V.M., Nefedova, I.V., Dysneuroontogenetic aspects in the clinical picture and pathogenesis of autistic syndromes in children, in Al’manakh Istselenie, Moscow: Trivola, 2000, no. 4, p. 46.

    Google Scholar 

  24. Yakovenko, E.A., Chutko, L.S., Ponomarev, V.A. et al., Features of the power spectra of the main EEG rhythms in children with different types of attention deficit hyperactivity disorder, Hum. Physiol., 2013, vol. 39, no. 1, p. 22.

    Article  Google Scholar 

  25. Dmitrova, E.D., Dubrovinskaya, N.V., Lukashevich, I.P. et al., Features of cerebral support of verbal processes in children with dysgraphia and dyslexia, Hum. Physiol., 2005, vol. 31, no. 2, p. 125.

    Article  Google Scholar 

  26. Bloom, F., Lazerson, A., and Hofstadter, L., Brain, Mind, and Behavior, New York: W. H. Freeman and Co., 1985.

    Google Scholar 

  27. Meltzoff, A.N., Kuhl, P.K., Movellan, J., and Sejnovski, T.J., Foundation for a new science of learning, Science, 2009, vol. 325, no. 5938, p. 284.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Leutin, V.P., Nikolaeva N.I., Funktsional’naya asimmetriya mozga: mify i deistvitel’nost’ (Functional Asymmetry of the Brain: Myths and Reality), St. Petersburg: Rech’, 2005.

    Google Scholar 

  29. Kurganskaya, M.E., Manual asymmetry in children is related to parameters of early development and familial sinistrality, Hum. Physiol., 2011, vol. 37, no. 6, p. 654.

    Article  Google Scholar 

  30. Aleksandrova, N.Sh., Children’s language syndromes (alalias, children’s aphasias, Landau-Cleffner’s syndrome), Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2007, vol. 107, no. 8, p. 70.

    PubMed  Google Scholar 

  31. Pribram, K., Languages of the Brain, Englewood Cliffs: Prentice-Hall, 1969.

    Google Scholar 

  32. Mesulam, M., From sensation to cognition, Brain, 1998, vol. 121, p. 1013.

    Article  PubMed  Google Scholar 

  33. Kozhushko, N.Yu., Psychophysiological approach to the study of brain mechanisms for mental development disorders in children, in Kognitivnye issledovaniya (Cognitive Studies), Aleksandrov, Yu.I. and Solov’eva, V.D., Eds., Moscow: IPRAN, 2010, vol. 4, p. 65.

    Google Scholar 

  34. Kozhushko, N.Yu. and Matveev, Yu.K., RF Patent 2 402 973, Byull. Izobret., 2010, no. 31.

    Google Scholar 

  35. Mikropolyarizatsiya u detei s narusheniem psikhicheskogo razvitiya ili kak podnyat’ planku ogranichennykh vozmozhnostei? (Micropolarization in Children with Mental Development Disorders or How to Raise the Level of Limited Potential?), Kozhushko, N.Yu., Ed., St. Petersburg: KARO, 2011.

    Google Scholar 

  36. Chernigovskaya, T.V., If a mirror looks into a mirror, what will it see there? On the problem of evolution of language and consciousness, in Kognitivnye issledovaniya (Cognitive Studies), Aleksandrov, Yu.I. and Solov’eva, V.D., Eds., Moscow: IPRAN, 2010, vol. 4, p. 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Kozhushko.

Additional information

Original Russian Text © N.Yu. Kozhushko, S.A. Evdokimov, Yu.K. Matveev, E.P. Tereshchenko, Yu.D. Kropotov, 2014, published in Fiziologiya Cheloveka, 2014, Vol. 40, No. 5, pp. 30–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhushko, N.Y., Evdokimov, S.A., Matveev, Y.K. et al. Study of local EEG specificities in children with mental development disorders using independent component analysis. Hum Physiol 40, 497–503 (2014). https://doi.org/10.1134/S0362119714050077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119714050077

Keywords

Navigation