Human Physiology

, Volume 40, Issue 1, pp 111–116

Molecular-physiological aspects of peptide regulation of the function of the retina in retinitis pigmentosa

  • V. Kh. Khavinson
  • V. E. Pronyaeva
  • N. S. Linkova
  • S. V. Trofimova
  • R. S. Umnov
Reviews

Abstract

Peptide bioregulators promote restoration of the physiological activity of the retina in retinitis pigmentosa in older adults and in animal models. The molecular mechanism of the physiological activity of peptides is associated with their ability to epigenetically regulate the synthesis of protein markers of the differentiation of retinal neurons and pigment epithelium.

Keywords

peptides retinitis pigmentosa epigenetic regulation cell differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kozlova, S.I., Demikova, N.S., and Blinnikova, O.E., Nasledstvennye sindromy i mediko-geneticheskoe konsul’tirovanie (Hereditary Syndromes and Medical-Genetic Counseling), Moscow, 1992.Google Scholar
  2. 2.
    Weleber, R.S., Retinitis pigmentosa and allied disorders, in Retina, St. Louis: Mosby, 1998, p. 335.Google Scholar
  3. 3.
    Shamshinova, A.M. and Volkov, V.V., Funktsional’nye metody issledovaniya v oftal’mologii (Functional Studies in Ophthalmology), Moscow: Meditsina, 1999.Google Scholar
  4. 4.
    Elliott, J., Jolicoeur, C., Ramamurthy, V., and Cayouette, M., Ikaros confers early temporal competence to mouse retinal progenitor cells, Neuro, 2008, vol. 60, p. 26.CrossRefGoogle Scholar
  5. 5.
    Young, M.J., Ray, J., and Whitely, S.J., Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature distrophic rats, Mol. Cell Neurosci., 2000, vol. 16, p. 197.PubMedCrossRefGoogle Scholar
  6. 6.
    Sagdullaev, B.T., Amarant, R.B., and Seiler, M.J., Retinal transplantation-induced recovery of retinotectal visual function in a rodent model of retinitis pigmentosa, Invest. Ophthalmol. Vis. Sci., 2003, vol. 44, p. 1686.PubMedCrossRefGoogle Scholar
  7. 7.
    Woch, G., Aramant, R.B., and Seiler, M.J., Retinal transplants restore visually evoked responses in rats with photoreceptor degeneration, Invest. Ophthalmol. Vis. Sci., 2001, vol. 42, p. 1669.PubMedGoogle Scholar
  8. 8.
    Nishida, A., Takabasbi, M., and Tamibara, H., Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina, Invest. Ophthalmol. Vis. Sci., 2000, vol. 43, p. 3053.Google Scholar
  9. 9.
    Poloschek, C.M. and Jägle, H., Pharmacological concepts to treat hereditary retinal degenerations, Ophthalmologe, 2012, vol. 109, no. 2, p. 112.PubMedCrossRefGoogle Scholar
  10. 10.
    Anisimov, V.N. and Khavinson, V.Kh., Peptide bioregulation of aging: results and prospects, Biogerontology, 2010, no. 11, p. 139.Google Scholar
  11. 11.
    Khavinson, V.Kh., Malinin, V.V., Trofimova, S.V., and Zemchikhina, V.N., Inductive activity of retinal peptides, Bull. Exp. Biol. Med., 2002, vol. 134, no. 5, p. 482.PubMedCrossRefGoogle Scholar
  12. 12.
    Khavinson, V.Kh., Solov’ev, A.Yu., Zhilinskii, D.V., et al., Epigenetic aspects of peptide-mediated regulation of aging, Adv. Gerontol., 2012, vol. 2, no. 4, p. 277.CrossRefGoogle Scholar
  13. 13.
    Morozov, V.G., Peptidnye bioregulyatory (25-letnii opyt eksperimental’nogo i klinicheskogo izucheniya) (Peptide Bioregulators (25 Years of Experimental and Clinical Study)), St. Petersburg: Nauka, 1996.Google Scholar
  14. 14.
    Khavinson, V.Kh., Linkova, N.S., Polyakova, V.O., et al., Peptides tissue-specifically stimulate cell differentiation during their aging, Bull. Exp. Biol. Med., 2012, vol. 153, no. 1, p. 148.PubMedCrossRefGoogle Scholar
  15. 15.
    Khavinson, V.Kh., Linkova, N.S., Trofimov, A.V., et al., Morphofunctional fundamentals for peptide regulation of aging, Biol. Bull. Rev., 2011, vol. 1, no. 4, p. 390.CrossRefGoogle Scholar
  16. 16.
    Trofimova, S.V., Maksimov, I.B., and Neroev, V.V., Regulyatornoe deistvie peptidov setchatki (Regulatory Effect of Retinal Peptides), St. Petersburg: OOO Firma KOSTA, 2004.Google Scholar
  17. 17.
    Vasil’eva, L.A., The use of retilin for the treatment of retinal pigment peripheral abiotrophy, Extended Abstract of Cand. (Med.) Dissertation, St. Petersburg, 1992.Google Scholar
  18. 18.
    Danilichev, V.F., Treatment of peripheral pigment tape-toretinal abiotrophy, Oftal’m. Zh., 1992, no. 3, p. 174.Google Scholar
  19. 19.
    Khavinson, V.Kh., Malinin, V.V., Trofimova, S.V., and Zemchikhina, V.N., Inductive activity of retinal peptides, Bull. Exp. Biol. Med., 2002, vol. 134, no. 5, p. 482.PubMedCrossRefGoogle Scholar
  20. 20.
    Khavinson, V.Kh., RF Patent No. 2161982, 2001.Google Scholar
  21. 21.
    Khavinson, V.Kh., Razumovskii, M.I., Trofimova, S.V., and Razumovskaya, A.M., Retinoprotective effect of epithalon in Campbell rats of various ages, Bull. Exp. Biol. Med., 2003, vol. 135, no. 5, p. 495.PubMedCrossRefGoogle Scholar
  22. 22.
    Khavinson, V.Kh., Razumovsky, M., Trofimova, S., et al., Pineal-regulating tetrapeptide epitalon improves eye retina condition in retinitis pigmentosa, Neuroendocrinol. Lett., 2002, vol. 23, no. 4, p. 365.PubMedGoogle Scholar
  23. 23.
    Khavinson, V.Kh., Zemchikhina, V.N., Trofimova, S.V., and Malinin, V.V., Effect of peptides on proliferative activity of retinal and pigmented epithelial cells, Bull. Exp. Biol. Med., 2003, vol. 135, no. 6, p. 597.PubMedCrossRefGoogle Scholar
  24. 24.
    Takano, M., Brain-derived neutrophic factor enhances neurite regeneration from retinal ganglion cells in aged human retina in vitro, Exp. Eye. Res., 2002, vol. 74, p. 319.PubMedCrossRefGoogle Scholar
  25. 25.
    Semenova, M.L., Sergeev, S.A., Saburina, I.N., and Kosheleva, N.V., The use of organotypic cultures of the retina as a model for the study of migration activity of transplanted cells, Klet. Transplantol. Tkan. Inzhener., 2010, vol. 5, no. 2, p. 55.Google Scholar
  26. 26.
    Sergeev, S.A., Pavlova, G.V., Takhchidi, Kh.P., et al., The effect of stem/progenitor cells on the functional status and severity of degenerative changes of the retina in Campbell rats, Oftal’mokhirurgiya, 2010, no. 3, p. 33.Google Scholar
  27. 27.
    Lin’kova, N.S., Trofimov, A.V., and Dudkov, A.V., Peptides of the pineal gland and cerebral cortex stimulate differentiation of pluripotent embryonic tissue, Klet. Tekhn. Biol. Med., 2011, no. 2, p. 97.Google Scholar
  28. 28.
    Khavinson, V.Kh., Lin’kova, N.S., Pronyaeva, V.E., et al., A method of creation a cell monolayer based on organotypic culture for screening of physiologically active substances, Bull. Exp. Biol. Med., 2012, no. 5, p. 795.Google Scholar
  29. 29.
    Arendt, D., Evolution of eyes and photoreceptor cell types, Int. J. Dev. Biol., 2003, vol. 47, nos. 7–8, p. 563.PubMedGoogle Scholar
  30. 30.
    Fedoreyeva, L.I., Kireev, I.I., Khavinson, V.Kh., and Vanyushin, B.F., Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA, Biochemistry, 2011, vol. 76, no. 11, p. 1210.PubMedGoogle Scholar
  31. 31.
    Khavinson, V.Kh., Fedoreeva, L.I., and Vanyushin, B.F., Short peptides modulate the effect of endonucleases of wheat seedling, Dokl. Biochem. Biophys., 2011, vol. 437, p. 64.PubMedCrossRefGoogle Scholar
  32. 32.
    Khavinson, V.Kh., Fedoreeva, L.I., and Vanyushin, B.F., Site-specific binding of short peptides with DNA modulated eukaryotic endonuclease activity, Bull. Exp. Biol. Med., 2011, vol. 151, no. 1, p. 66.PubMedCrossRefGoogle Scholar
  33. 33.
    Khavinson, V.Kh., Tarnovskaya, S.I., Lin’kova, N.S., et al., Short cell-penetrating peptides: a model of inter-actions with gene promoter sites, Bull. Exp. Biol. Med., 2012, vol. 154, no. 3, p. 403.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • V. Kh. Khavinson
    • 1
    • 2
  • V. E. Pronyaeva
    • 2
  • N. S. Linkova
    • 2
  • S. V. Trofimova
    • 2
  • R. S. Umnov
    • 2
  1. 1.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia

Personalised recommendations