Skip to main content
Log in

Features of cyclic sleep organization and melatonin production in full-term newborns with intrauterine growth retardation

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Data on the formation of cyclic sleep organization and melatonin production in full-term newborn infants with intrauterine growth retardation (IUGR) are presented. It has been shown that disordered cyclic sleep organization in IUGR newborns indicates the degree of intrauterine brain damage as a result of chronic hypoxia. The absence of cyclic sleep organization, the disordered formation of the paradoxical phase combined with delayed development of tonic, congenital reflex reactions, and low melatonin production give evidence of severe brain damage, which warrants combined therapy in the early neonatal period of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evsyukova, I.I., Fomenko, B.A., Andreeva, A.A., et al., Features of adaptation of newborn infants with intrauterine growth retardation, Zh. Akush. Zhen. Boleznei, 2003, vol. 52, no. 4, p. 23.

    Google Scholar 

  2. Deryugina, O.A., Features of neonatal adaptation of preterm newborns with IUGR and correction of its disorders, Cand. Sci. (Med.) Dissertation, Moscow, 1990.

    Google Scholar 

  3. Dessi, A., Ottonello, G., and Fanos, V., Physiopathology of intrauterine growth retardation: from classical data to metabolomics, J. Matern. Fetal Neonatal Med., 2012, vol. 25, Suppl. 5, p. 13.

    Article  PubMed  CAS  Google Scholar 

  4. Shavit, T., Ashual, E., Regev, R., et al., Is it necessary to induce labor in cases of intrauterine growth retardation at term? J. Perinat. Med., 2012, vol. 40, no. 5, p. 539.

    PubMed  Google Scholar 

  5. Barashnev, Yu.I., Hypoxic encephalopathy: hypotheses of the pathogenesis of cerebral disorders and the search for methods of medicinal therapy, Ross. Vestn. Perinat. Pediatr., 2002, vol. 47, no. 1, p. 6.

    Google Scholar 

  6. Pal’chik, A.B., Vvedenie v nevrologiyu razvitiya (Introduction to Developmental Neurology), St. Petersburg: Kosta, 2007.

    Google Scholar 

  7. Evsyukova, I.I., Formation of the CNS functions and the pathogenesis of disorders under unfavorable conditions of intrauterine fetal life, Vestn. Ross. Assotsiat. Akush. Ginekol., 1997, no. 3, p. 31.

    Google Scholar 

  8. Lapillonne, A., Intrauterine growth retardation and adult outcome, Bull. Acad. Natl. Med., 2011, vol. 195, no. 3, p. 477.

    PubMed  Google Scholar 

  9. Barker, D.J.P., Eriksson, J.G., Forsen, T., and Osmond, C., Fetal origins of adult disease: strength of effects and biological basis, Int. J. Epidemiol., 2002, vol. 31, no. 6, p. 1235.

    Article  PubMed  CAS  Google Scholar 

  10. Wake, M., Morton-Allen, E., Poulakis, Z., et al., Prevalence, stability, and outcomes of cry-fuss and sleep problems in the first two years of life: prospective community-based study, Pediatrics, 2006, vol. 117, no. 3, p. 836.

    Article  PubMed  Google Scholar 

  11. Geib, L.T. and Nunes, M.L., The incidence of sudden death syndrome in a cohort of infants, J. Pediatr., 2006, vol. 82, no. 1, p. 21.

    Article  Google Scholar 

  12. Moore, M., Allison, D., and Rosen, C.L., A review of pediatric nonrespiratory sleep disorders, Chest, 2006, vol. 130, no. 4, p. 1252.

    Article  PubMed  Google Scholar 

  13. Kel’manson, I.A., Natural course of sleep disorders in infants in the first year of life, in Aktual’nye problemy somnologii (Topical Somnology Problems) (Proc. VII All-Russian Conf.), Moscow, 2010, p. 32.

    Google Scholar 

  14. Santos, I.S., Mota, D.M., and Matijasevich, A., Epidemiology of co-sleeping and nighttime waking at 12 months in a birth cohort, J. Pediatr., 2008, vol. 84, no. 2, p. 114.

    Google Scholar 

  15. Danker-Hopfe, H., Growth and development of children with a special focus on sleep, Prog. Biophys. Mol. Biol., 2011, vol. 107, no. 3, p. 333.

    Article  PubMed  Google Scholar 

  16. Pearl, P.L., Childhood sleep disorders: diagnostic and therapeutic approaches, Curr. Neurol. Neurosci. Rep., 2002, vol. 2, no. 2, p. 150.

    Article  PubMed  Google Scholar 

  17. Nixon, G.M., Thompson, J.M.D., Han, D.Y., et al., Short sleep duration in middle childhood: risk factors and consequences, Sleep, 2008, vol. 31, no. 1, p. 71.

    PubMed  Google Scholar 

  18. Fallone, G., Acebo, C., Arnedt, J.T., et al., Effects of active sleep restriction on behavior, sustained attention, and response inhibition in children, Percep. Mot. Skills, 2001, vol. 93, no. 1, p. 213.

    Article  CAS  Google Scholar 

  19. Hemmi, M.H., Wolke, D., and Schneider, S., Associations between problems with crying, sleeping, and/or feeding in infancy and long-term behavioral outcomes in childhood: a meta-analysis, Arch. Dis. Child., 2011, vol. 96, no. 7, p. 622.

    Article  PubMed  Google Scholar 

  20. Gottlieb, D.J., Chase, C., Vezina, R.M., et al., Sleepdisordered breathing symptoms are associated with poorer cognitive function in 5-year-old children, J. Pediatr., 2004, vol. 145, no. 4, p. 458.

    Article  PubMed  Google Scholar 

  21. Wolke, D., Rizzo, P., and Woods, S., Persistent infant crying and hyperactivity problems in middle childhood, Pediatrics, 2002, vol. 109, no. 6, p. 1054.

    Article  PubMed  Google Scholar 

  22. Dominguez-Ortega, L. and de Vicente-Colomina, A., Attention deficit-hyperactivity disorder and sleep disorders, Med. Clin. (Barc.), 2006, vol. 126, no. 13, p. 500.

    Article  Google Scholar 

  23. Evsyukova, I.I., Formation of the mechanisms of regulation of the rhythm of cardiac activity and respiration in the sleep cycle of newborns under different conditions of intrauterine growth, Doctoral (Med.) Dissertation, Leningrad, 1983, p. 42.

    Google Scholar 

  24. Finkel’, M.L., Influence of conditions of normal and late toxicosis-complicated pregnancy on the establishment of the external respiration function in newborn infants, Cand. Sci. (Med.) Dissertation, Leningrad, 1975.

    Google Scholar 

  25. Shevchenko, O.T., State of cerebral circulation in the sleep cycle of healthy and hypoxia-afflicted neonates, Cand. Sci. (Med.) Dissertation, Leningrad, 1986.

    Google Scholar 

  26. Batilova, T.V., State of central hemodynamics in the sleep cycle in newborn infants under different conditions of intrauterine life, Cand. Sci. (Med.) Dissertation, Leningrad, 1989.

    Google Scholar 

  27. Kosov, M.N., Features of capnogram in newborn infants under normal and unfavorable intrauterine development, Cand. Sci. (Med.) Dissertation, St. Petersburg, 1999.

    Google Scholar 

  28. Shepoval’nikov, A.N., Aktivnost’ spyashchego mozga. Elektropoligraficheskoe issledovanie fiziologicheskogo sna u detei (The Activity of the Sleeping Brain. Electropolygraphic Study of the Physiological Sleep in Children), Leningrad: Nauka, 1971.

    Google Scholar 

  29. Evsyukova, I.I. and Polyakova, G.P., Sleep of newborns as an indicator of the functional state of the central nervous system, Akush. Ginekol., 1979, no. 9, p. 58.

    Google Scholar 

  30. Dan, B. and Boyd, S.G., A neurophysiological perspective on sleep and its maturation, Dev. Med. Clin. Neurol., 2006, vol. 48, no. 9, p. 773.

    Article  Google Scholar 

  31. Vanhatalo, S. and Kaila, K., Development of neonatal EEG activity: from phenomenology to physiology, Semin. Fetal Neonatal Med., 2006, vol. 11, no. 6, p. 471.

    Article  PubMed  Google Scholar 

  32. Scher, M.S., Neonatal encephalopathies as classified by EEG-sleep criteria: severity and timing based on clinical/pathologic correlations, Pediatr. Neurol., 1994, vol. 11, no. 3, p. 189.

    Article  PubMed  CAS  Google Scholar 

  33. Lamblin, M.D., Andre, M., Auzoux, M., et al., Indications of electroencephalogram in the newborn, Arch. Pediatr., 2004, vol. 11, no. 7, p. 829.

    Article  PubMed  CAS  Google Scholar 

  34. Scher, M.S., Ontogeny of EEG-sleep from neonatal through infancy periods, Sleep Med., 2008, vol. 9, no. 6, p. 615.

    Article  PubMed  Google Scholar 

  35. Stephan-Blanchard, E., Telliez, F., Leke, A., et al., The influence of in utero exposure to smoking on sleep patterns in preterm neonates, Sleep, 2008, vol. 31, no. 12, p. 1683.

    PubMed  Google Scholar 

  36. Bespyatykh, A.Yu., Brodskii, V.Ya., Burlakova, O.V., et al., Melatonin: teoriya i praktika (Melatonin: Theory and Practice), Rapoport, S.I. and Golichenkov, V.A., Eds., Moscow: Medpraktika-M, 2009.

  37. Rodriguez, C., Mayo, J.C., Sainz, R.M., et al., Regulation of antioxidant enzymes: a significant role for melatonin, J. Pineal Res., 2004, vol. 36, no. 1, p. 1.

    Article  PubMed  CAS  Google Scholar 

  38. Mayo, J.C., Sainz, R.M., Antoli, I., et al., Melatonin regulation of antioxidant enzyme gene expression, Cell Mol. Life Sci., 2002, vol. 59, no. 10, p. 1706.

    Article  PubMed  CAS  Google Scholar 

  39. Tan, D.X., Manchester, L.C., Terron, M.P., et al., One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species, J. Pineal Res., 2007, vol. 42, no. 1, p. 28.

    Article  PubMed  CAS  Google Scholar 

  40. Munoz-Hoyos, A., Bonillo-Perales, A., Avila-Villegas, R., et al., Melatonin levels during the first week of life and their relation with the antioxidant response in perinatal period, Neonatology, 2007, vol. 92, no. 3, p. 209.

    Article  PubMed  CAS  Google Scholar 

  41. Fomenko, B.A., Influence of the intrauterine growth conditions on the formation of perinatal CNS pathology in preterm infants, Cand. Sci. (Med.) Dissertation, St. Petersburg, 1995, p. 19.

    Google Scholar 

  42. Pauer, M.L. and Shul’kin, J., Rozhdenie rebenka, distress i risk boleznei (Childbirth, Distress, and the Risk of Diseases), Moscow: Triada-X, 2010.

    Google Scholar 

  43. Gogfrey, K.M., The role of the placenta in fetal programming, Placenta, 2002, vol. 23,Suppl. A, p. 20.

    Article  Google Scholar 

  44. Rees, S., Harding, R., and Walker, D., The biological basis of injury and neuroprotection in the fetal and neonatal brain, Int. J. Dev. Neurosci., 2011, vol. 29, no. 6, p. 551.

    Article  PubMed  Google Scholar 

  45. Galland, B.C., Taylor, B.J., Bolton, D.P., and Sayers, R.M., Heart rate variability and cardiac reflexes in small for gestational age infants, J. Appl. Physiol., 2006, vol. 100, no. 3, p. 933.

    Article  PubMed  Google Scholar 

  46. Barker, D.J.P., The development origins of adult disease, J. Am. College Nutrition, 2004, vol. 23,Suppl. 6, p. 588.

    Article  Google Scholar 

  47. Jansson, T. and Powell, T., Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches, Clin. Sci., 2007, vol. 113, no. 1, p. 1.

    Article  PubMed  CAS  Google Scholar 

  48. Luk’yanova, L.D., Mitochondrial dysfunction is a type pathological process, the molecular mechanism of hypoxia, in Problemy gipoksii: molekulyarnye, fiziologicheskie i meditsinskie aspekty (Problems of Hypoxia: The Molecular, Physiological, and Medical Aspects), Luk’yanova, L.D. and Ushakov, I.B., Eds., Moscow, 2004.

    Google Scholar 

  49. Luk’yanova, L.D., Modern problems of adaptation to hypoxia. The signal mechanisms and their role in systemic regulation, Patol. Fiziol. Eksp. Ter., 2011, no. 1, p. 2.

    Google Scholar 

  50. Kostyuk, P.G., Stanika, R.I., and Luk’yanets, E.A., Intracellular mechanisms of hypoxic disorders of the neural cell function, in Problemy gipoksii: molekulyarnye, fiziologicheskie i meditsinskie aspekty (Problems of Hypoxia: The Molecular, Physiological, and Medical Aspects), Luk’yanova, L.D. and Ushakov, I.B., Eds., Moscow, 2004.

    Google Scholar 

  51. Rees, S., Harding, R., and Walker, D., An adverse intrauterine environment: implications or injury and altered development of the brain, Int. J. Dev. Neurosci., 2008, vol. 26, no. 1, p. 3.

    Article  PubMed  Google Scholar 

  52. Hossain, M.A., Hypoxic-ischemic injury in neonatal brain: involvement of a novel neonatal molecule in neuronal cell death and potential target for neuroprotection, Int. J. Dev. Neurosci., 2008, vol. 26, no. 1, p. 93.

    Article  PubMed  CAS  Google Scholar 

  53. Mallard, C., Loeliger, M., Copolov, D., and Rees, S., Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following growth restriction, Neuroscience, 2000, vol. 100, no. 2, p. 327.

    Article  PubMed  CAS  Google Scholar 

  54. Raman, L., Take, I., Ennis, K., et al., In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus, Brain Res. Dev., 2005, vol. 156, no. 2, p. 202.

    Article  CAS  Google Scholar 

  55. Jensen, A., Garnier, Y., Middelanis, J., and Berger, R., Perinatal brain damage: from pathophysiology to prevention, Eur. J. Obstet. Gynecol. Reprod. Biol., 2003, vol. 110, Suppl. 1, p. 70.

    Article  Google Scholar 

  56. Berger, R., Garnier, Y., and Jensen, A., Perinatal brain damage: underlying mechanisms and neuroprotective strategies, J. Soc. Gynecol. Investig., 2002, vol. 9, no. 6, p. 319.

    Article  PubMed  CAS  Google Scholar 

  57. Dieni, S. and Rees, S., Dendritic morphology is altered in hippocampal neurons following prenatal compromise, J. Neurobiol., 2003, vol. 55, no. 1, p. 41.

    Article  PubMed  Google Scholar 

  58. Rees, S., Mallard, C., Breen, S., et al., Fetal brain injury following prolonged hypoxemia and placental insufficiency: a review, Comp. Biochem. Physiol. Mol. Integr. Physiol., 1998, vol. 119, no. 3, p. 653.

    Article  CAS  Google Scholar 

  59. Zakharova, E.I., Svinov, M.M., Germanova, E.N., et al., Mechanisms of involvement of cholinergic systems in the processes of morphofunctional reorganization of the neocortex and hippocampus under brain hypoxia conditions, in Problemy gipoksii: molekulyarnye, fiziologicheskie i meditsinskie aspekty (Problems of Hypoxia: The Molecular, Physiological, and Medical Aspects), Luk’yanova, L.D. and Ushakov, I.B., Eds., Moscow, 2004.

    Google Scholar 

  60. Aloe, F., Pinto de Azevedo, A., and Hasan, R., Sleepwake cycle mechanisms, Rev. Bras. Psiquiatr., 2005, vol. 27,suppl. 1, p. 33.

    PubMed  Google Scholar 

  61. Fan, X. and van Bel, F., Pharmacological neuroprotection after perinatal asphyxia, J. Matern. Fetal Neonatal Med., 2010, vol. 23,Suppl. 3, p. 17.

    Article  PubMed  Google Scholar 

  62. Ozdemir, O.M.A., Ergin, H., and Sahiner, T., Electrophysiological assessment of the brain function in term SGA infants, Brain Res., 2009, vol. 1270, no. 3, p. 33.

    Article  PubMed  Google Scholar 

  63. Jan, J.E., Reiter, R.J., Wasdell, M.B., and Bax, M., The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders, J. Pineal Res., 2009, vol. 46, no. 2, p. 1.

    Article  PubMed  CAS  Google Scholar 

  64. Ferber, S.G., Als, H., McAnulty, G., et al., Melatonin and mental capacities in newborn infants, J. Pediatr., 2011, vol. 159, no. 1, p. 99.

    Article  PubMed  CAS  Google Scholar 

  65. Gitto, E., Pellegrino, S., Gitto, P., et al., Oxidative stress of the newborn in the pre- and postnatal period and the clinical utility of melatonin, J. Pineal Res., 2009, vol. 46, no. 2, p. 128.

    Article  PubMed  CAS  Google Scholar 

  66. Wakatsuki, A., Okatani, Y., and Kaneda, C., Melatonin protects fetal rat brain against oxidative mitochondrial damage, J. Pineal Res., 2001, vol. 30, no. 1, p. 22.

    Article  PubMed  CAS  Google Scholar 

  67. Liu, J., Somera-Molina, K.C., Hudson, R.L., and Dubocovich, M.L., Melatonin potentiates running wheel-induced neurogenesis in the dentate gyrus of adult C3H/HeN mice hippocampus, J. Pineal Res., 2013, vol. 54, no. 2, p. 222.

    Article  PubMed  CAS  Google Scholar 

  68. Tauman, R., Zisapel, N., Laudon, M., et al., Melatonin production in infants: association with perinatal factors and development, Pediatr. Neurol., 2002, vol. 26, no. 5, p. 379.

    Article  PubMed  Google Scholar 

  69. Kennaway, D.J., Stamp, G.E., and Goble, F.C., Development of melatonin production in infants and the impact of prematurity, J. Clin. Endocrinol. Metab., 1992, vol. 75, no. 2, p. 367.

    Article  PubMed  CAS  Google Scholar 

  70. Kennaway, D.J., Lushington, K., Dawson, D., et al., Urinary 6-sulfatoxymelatonin excretion and aging: new results and a critical review of the literature, J. Pineal Res., 1999, vol. 27, no. 4, p. 210.

    Article  PubMed  CAS  Google Scholar 

  71. Caldelas, J., Tejadilla, D., Gonzalez, B., et al., Diurnal pattern of clock gene expression in the hypothalamus of the newborn rabbit, Neuroscience, 2007, vol. 144, no. 2, p. 395.

    Article  PubMed  CAS  Google Scholar 

  72. Tret’yakova, M.B., Melatonin and thrombocyte functional activity in newborn infants with intrauterine growth retardation, Cand. Sci. (Med.) Dissertation, St. Petersburg, 2006.

    Google Scholar 

  73. Chen, Y.-C., Tain, Y.-L., Sheen, J.-M., and Huang, L.-T., Melatonin utility in neonates and children, J. Form. Med. Associat., 2012, vol. 111, p. 57.

    Article  CAS  Google Scholar 

  74. Szymusiak, R., Gvilia, I., and McGinty, D., Hypothalamic control sleep, Sleep, 2008, vol. 8, no. 4, p. 291.

    Google Scholar 

  75. Sanduk, R., Melatonin and maturation of REM sleep, Int. J. Neurosci., 1992, vol. 63, nos. 1–2, p. 105.

    Article  Google Scholar 

  76. Alonso-Alconada, D., Alvarez, A., Lacalle, J., and Hilario, E., Histological study of the protective effect of melatonin on neural cells after neonatal hypoxiaischemia, Histol. Histopathol., 2012, vol. 27, no. 6, p. 771.

    PubMed  CAS  Google Scholar 

  77. Ozyener, F., Cetinkaya, M., Alkan, T., et al., Neuroprotective effects of melatonin administered alone or in combination with topiramate in neonatal hypoxicischemic rat model, Restor. Neurol. Neurosci., 2012, vol. 30, no. 5, p. 435.

    PubMed  CAS  Google Scholar 

  78. Villapol, S., Fau, S., Renolleau, S., et al., Melatonin promotes myelination by decreasing white matter inflammation after neonatal stroke, Pediatr. Res., 2011, vol. 69, no. 1, p. 51.

    Article  PubMed  CAS  Google Scholar 

  79. Lekic, T., Manaenko, A., and Rolland, W., Neuroprotection by melatonin after germinal matrix hemorrhage in neonatal rats, Acta Neurochir. Suppl., 2011, vol. 111, p. 201.

    Article  PubMed  Google Scholar 

  80. Manjarrez, G., Cisneros, I., Herrera, R., et al., Prenatal impairment of brain serotonergic transmission in infants, J. Pediatr., 2005, vol. 147, no. 5, p. 592.

    Article  PubMed  CAS  Google Scholar 

  81. Hernandez-Rodriquez, J., Meneses, L., Herera, R., and Manjarrez, G., Another abnormal trait in the serotonin metabolism path in intrauterine growthrestricted infants, Neonatology, 2008, vol. 95, no. 2, p. 125.

    Article  Google Scholar 

  82. Riese, M.L., Size for gestational age and neonatal sleep variables: behavioral indices of risk in full-term twins, Acta Genet. Med. Gemellol., 1993, vol. 42, no. 1, p. 23.

    PubMed  CAS  Google Scholar 

  83. Curzi-Dascalova, L., Peirano, P., and Christova, E., Respiratory characteristics during sleep in healthy small-for-gestational-age newborns, Pediatrics, 1996, vol. 97, no. 4, p. 554.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.I. Evsyukova, O.V. Koval’chuk-Kovalevskaya, N.A. Maslyanyuk, D.S. Dodkhoev, 2013, published in Fiziologiya Cheloveka, 2013, Vol. 39, No. 6, pp. 63–71.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evsyukova, I.I., Koval’chuk-Kovalevskaya, O.V., Maslyanyuk, N.A. et al. Features of cyclic sleep organization and melatonin production in full-term newborns with intrauterine growth retardation. Hum Physiol 39, 617–624 (2013). https://doi.org/10.1134/S0362119713060030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119713060030

Keywords

Navigation