Skip to main content
Log in

New approaches in the study of the neuroplasticity process in patients with central nervous system lesions

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Methods that, on the one hand, can ensure patient’s mobility and, on the other hand, activate afferent inputs are the main in the rehabilitation treatment. Recent studies have shown that plasticity is the structural basis of recovery after central nervous system lesions. Reorganization of cortical areas, increase in the efficiency of the functioning of preserved structures; and active use of alternative ascending pathways, e.g., intensification of afferent input, constitute the anatomical basis of plasticity. However, sensory correction methods, without accounting of functional condition of patients, may lead to the formation of pathological symptoms: spasticity, hyperreflexia, etc. So, the main aim is to study adequate management of the neuroplasticity process. This problem cannot be solved without modern methods of neuroimaging and brain mapping. The new approach for the study of cortical mechanisms of neuroplasticity, responsible for locomotion, was developed in the present study. This approach is an integrated use of functional magnetic resonance imaging (fMRI) and navigation transcranial magnetic stimulation (nTMS). It has been shown that vast fMRI activation area in the first and second sensorimotor areas emerges with a passive sensorimotor paradigm usage that imitates backing load during walking. The Korvit mechanical stimulator of backing zones of footsteps is used to create this paradigm. The nTMS examination used after fMRI helps to localize motor representation of muscles which control locomotion more accurately. We assume that the new approach can be used for studying the neuroplasticity process and assessing neuroplasticity changes when taking rehabilitation measures to restore and correct the walking process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kryzhanovskii, G.N., Plasticity in pathology of the nervous system, Zh. Nevrol. Psikhiatrii, 2001, no. 2, p. 4.

    Google Scholar 

  2. Gusev, E.I. and Kamchatnov, P.R., Plasticity of the nervous system, Zh. Nevrol. Psikhiatrii, 2004, no. 3, p. 73.

    Google Scholar 

  3. Adrianov, O.S., O printsipakh funktsional’noi organizatsii mozga (On Principles of the Brain Functional Organization), Moscow: Stomatologiya, 1999.

    Google Scholar 

  4. Merzenich, M.M., Kaas, J.H., Wall, J.T., et al., Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation, Neuroscience, 1983, vol. 8, p. 33.

    Article  PubMed  CAS  Google Scholar 

  5. Jenkins, W.M. and Merzenich, M.M., Reorganization of neocortical representation after brain injury: a neurophysiological model of bases of recovery from stroke, Prog. Brain Res., 1987, vol. 71, p. 249.

    Article  PubMed  CAS  Google Scholar 

  6. Merzenich, M.M., Nelson, R.J., Stryke, M.P., et al., Somatosensory cortical map changes following digital amputation in adult monkeys, J. Comp. Neurol., 1984, vol. 224, p. 591.

    Article  PubMed  CAS  Google Scholar 

  7. Iseki, K., Hanakawa, T., Shinozaki, J., et al., Neural mechanisms involved in mental imagery and observation of gait, NeuroImage, 2008, vol. 41, p. 1021.

    Article  PubMed  Google Scholar 

  8. Jahn, K., Deutschlander, A., Stephan, T., et al., Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging, NeuroImage, 2004, vol. 22, p. 1722.

    Article  PubMed  Google Scholar 

  9. la Fougere, C., Zwergal, A., Rominger, A., et al., Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison, NeuroImage, 2010, vol. 50, p. 1589.

    Article  PubMed  Google Scholar 

  10. Mehta, J.P., Verber, M.D., Wieser, J.A., et al., A novel technique for examining human brain activity associated with pedaling using fMRI, J. Neurosci. Methods, 2009, vol. 179, p. 230.

    Article  PubMed  Google Scholar 

  11. Kremneva, E.I., Chernikova, L.A., Konovalov, R.N., et al., Activation of the sensorimotornoi cortex using a device for mechanical stimulation of the plantar support zones, Hum. Physiol., 2012, vol. 38, no. 1, p. 49.

    Article  Google Scholar 

  12. Krings, T., Chiappa, K.H., and Foltys, H., Introducing navigated transcranial magnetic stimulation as a refined brain mapping methodology, Neurosurg. Rev., 2001, vol. 24, p. 171.

    Article  PubMed  CAS  Google Scholar 

  13. Hannula, H., Ylioja, S., Pertovaara, A., et al., Somatotopic blocking of sensation with navigated transcranial magnetic stimulation of the primary somatosensory cortex, Hum. Brain Mapp., 2005, vol. 26, p. 100.

    Article  PubMed  Google Scholar 

  14. Ruohonen, J. and Karhu, J., Navigated transcranial magnetic stimulation. Neurophysiologie clinique, Clin. Neurophysiol., 2010, vol. 40, p. 7.

    Article  CAS  Google Scholar 

  15. Julkunen, P., Säisänen, L., Danner, N., et al., Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials, Neuroimage, 2009, vol. 44, p. 790.

    Article  PubMed  Google Scholar 

  16. Sack, A.T., Kadosh, R.C., Schuhmann, T., et al., Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods, J. Cogn. Neurosci., 2009, vol. 21, p. 207.

    Article  PubMed  Google Scholar 

  17. Pascual-Leone, A., Freitas, C., Oberman, L., et al., Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI, Brain Topogr., 2011, vol. 24, p. 302.

    Article  PubMed  Google Scholar 

  18. Halko, M.A., Eldaief, M.C., Horvath, J.C., and Pascual-Leone, A., Combining transcranial magnetic stimulation and fMRI to examine the default mode network, J. Vis. Exp., 2010, vol. 28.

  19. Friston, K.J., Holmes, A.P., Worsley, K.J., et al., Statistical parametric maps in functional imaging: a general linear approach, Hum. Brain Mapp., 1995, vol. 2, p. 189.

    Article  Google Scholar 

  20. Nikitin, S.S. and Kurenkov, A.L., Magnitnaya stimulyatsiya v diagnostike i lechenii boleznei nervnoi sistemy. Rukovodstvo dlya vrachei (Magnetic Stimulation in Diagnosis and Treatment of Diseases of the Nervous System. Manual for Physicians), Moscow: SAShKO, 2003.

    Google Scholar 

  21. Pascual-Leone, A., Davey, N., Rothwell, J., et al., Handbook of Transcranial Magnetic Stimulation, London: Hodder Arnold, 2002.

    Google Scholar 

  22. Wagner, T., Valero-Cabre, A., and Pascual-Leone, A., Noninvasive human brain stimulation, Annu. Rev. Biomed. Eng., 2007, vol. 9, p. 527.

    Article  PubMed  CAS  Google Scholar 

  23. Neuvonen, T., Niskanen, E., Hannula, H., et al., Functional MRI agrees with navigated transcranial magnetic stimulation in primary motor cortex localization, in Congress of Neurological Surgeons. New Orleans, 2009, p. 24.

    Google Scholar 

  24. Dietz, V., Interaction between central programs and afferent input in the control of posture and locomotion, J. Biomechanics, 1996, vol. 29, p. 841.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernikova, L.A., Kremneva, E.I., Chervyakov, A.V. et al. New approaches in the study of the neuroplasticity process in patients with central nervous system lesions. Hum Physiol 39, 272–277 (2013). https://doi.org/10.1134/S0362119713030055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119713030055

Keywords

Navigation