Skip to main content
Log in

Formation of the urine proteome of healthy humans

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review deals with modern ideas on the processes that determine the urine protein composition of healthy people. In the past decade, the development of highly sensitive mass-spectrometric methods of protein detection stimulated studies of the protein composition of various human body fluids, including urine. Nowadays, the methods of separating complex protein mixtures and identification of individual components of these mixtures provide an opportunity to detect a significant amount of proteins and peptides of different origins in human urine. Physiological variation of the urine protein composition determined by the methods of proteomics remains a poorly studied but very important problem. Under physiological conditions, there are many factors that influence the filtering of plasma proteins in the glomeruli and reabsorption in the proximal tubules of the nephron. These are hypoxia, oxidative stress, changes in the acid-base balance and blood pressure, the effects of the parathyroid hormone, angiotensin-II, and other substances that control water and electrolyte metabolism. It is demonstrated that, because of the close structural and functional relationships between reabsorption processes in the proximal tubules of the nephron, reabsorption and modulation of sodium, water, chloride, phosphate, and bicarbonate depend on changes in various parts of the process of protein reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McDonough, A.A., Mechanisms of Proximal Tubule Sodium Transport Regulation That Link Extracellular Fluid Volume and Blood Pressure, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, p. 851.

    Google Scholar 

  2. Ginetsinskii, A.G., Fiziologicheskie mekhanizmy vodnosolevogo ravnovesiya (Physiological Mechanisms of Water-Salt Balance), Moscow: AN SSSR, 1963.

    Google Scholar 

  3. Natochin, Yu.V., Fiziologiya pochki, in Fiziologiya pochki i vodno-solevogo obmena (Physiol.ogy of Kidney and Water-Salt Balance), St. Petersburg: Nauka, 1993, p. 202.

    Google Scholar 

  4. Natochin, Yu.V., Funktsional’naya integratsiya i modulyatsiya v kletochnoi fiziologii nefrona, Fiziol. Zh. im. Sechenova, 1993, vol. 79, issue 12, p. 8.

    CAS  Google Scholar 

  5. Ivanova, L.N., Physiol.ogy of Kidney and Water-Electrolyte Metabolism: Directions of Basic Researches in Russia, Usp. Fiziol. Nauk, 1995, vol. 26, no. 3, p. 3.

    PubMed  CAS  Google Scholar 

  6. Gazenko, O.G., Grigor’ev, A.I., and Natochin, Yu.V., Water-Salt Homeostasis, Seriya 54 “Problemy kosmicheskoi biologii”(Problems of Space Biology), Moscow: Nauka, 1986, p. 238.

    Google Scholar 

  7. Adachi, J., Chanchal, K., Yanling, Z., et al., The Human Urinary Proteome Contains More Than 1500 Proteins, Including a Large Proportion of Membrane Proteins, Genome Biology, 2006, vol. 7, p. 80.

    Article  CAS  Google Scholar 

  8. Court, M., Selevsek, N., Matondo, M., et al., Toward a Standardized Urine Proteome Analysis Methodology, Proteomics, 2011, vol. 11, no. 6, p. 1160.

    Article  PubMed  CAS  Google Scholar 

  9. Coon, B.G., Mukherjee, D., Hanna, C.B., et al., Lowe Syndrome Patient Fibroblasts Display Ocrl1-Specific Cell Migration Defects That Cannot Be Rescued by the Homologous Inpp5b Phosphatase, Hum. Mol. Genet., 2009, vol. 18, p. 4478.

    Article  PubMed  CAS  Google Scholar 

  10. Thongboonkerd, V., Practical Points in Urinary Proteomics, J. Proteome Res, 2007, vol. 6, no. 10, p. 3881.

    Article  PubMed  CAS  Google Scholar 

  11. González-Buitrago, J.M., Ferreira, L., and Lorenzo, I., Urinary Proteomics, Clin. Chim. Acta, 2007, vol. 375, nos. 1–2, p. 49.

    Article  PubMed  CAS  Google Scholar 

  12. Fliser, D., Novak, J., Thongboonkerd, V., et al., Advances in Urinary Proteome Analysis and Biomarker Discovery, J. Am. Soc. Nephrol, 2007, vol. 18, no. 4, p. 1057.

    Article  PubMed  CAS  Google Scholar 

  13. Vidal, B.C. and Bonventre, J.V., I-Hong Hsu S. Towards the Application of Proteomics in Renal Disease Diagnosis, Clin. Sci. (Lond.), 2005, vol. 109, no. 5, p. 421.

    Article  CAS  Google Scholar 

  14. Haraldsson, B. and Sörensson, J., Why Do We Not All Have Proneinuria? An Update of Our Current Understanding of the Glomerular Barrier, Physiology, 2004, vol. 19, p. 7.

    Article  Google Scholar 

  15. Tisher, C.C. and Brenner, B.M., Structure and Function of the Glomerulus, Philadelphia, PA: Lippincott, 1994.

    Google Scholar 

  16. Deen, W.M., Lazzara, M.J., and Myers, B.D., Structural Determinarts of Glomerular Permeability, Am. J. Physiol. Heart Physiol., 2001, vol. 281, p. 579.

    Google Scholar 

  17. Tisher, C.C. and Madsen, K.M., in The Kidney, Brenner, B and Rector, F, Eds., Philadelphia,: PA. Saunders, 1991, p. 3.

  18. Rostgaard, J. and Qvortrup, K., Sieve Plugs in Fenestrae of Glomerular Capillaries-Site of the Filtration Barrier?, Cells Tissues Organs, 2002, vol. 170, p. 132.

    Article  PubMed  Google Scholar 

  19. Jefferson, J.A., Shankland, S.H., and Pichler, R.H., Proteinuria in Diabetic Kidney Disease: a Mechanistic Viewpoint, Kidney Int., 2008, vol. 74, p. 22.

    Article  PubMed  CAS  Google Scholar 

  20. Noakes, P.G., Miner, J.H., Gautam, M., et al., The Renal Glomerulus of Mice Lacking S-Laminin/Laminin Beta 2: Nephrosis Despite Molecular Compensation by Laminin Beta 1, Nat. Genet., 1995, vol. 10, p. 400.

    Article  PubMed  CAS  Google Scholar 

  21. Barker, D.F., Hostikka, S.L., Zhou, J., et al., Identification of Mutations in the COL4A5 Collagen Gene in Alport Syndrome, Science, 1990, vol. 248, p. 1224.

    Article  PubMed  CAS  Google Scholar 

  22. Tryggvason, K. and Patrakka, J., Thin Basement Membrane Nephropathy, J. Am. Soc. Nephrol, 2006, vol. 17, p. 813.

    Article  PubMed  CAS  Google Scholar 

  23. Kerjaschki, D., Sharkey, D.J., and Farquhar, M.G., Identification and Characterization of Podocalyxin-the Major Sialoprotein of the Renal Glomerular Epithelial Cell, J. Cell Biol., 1984, vol. 98, p. 1591.

    Article  PubMed  CAS  Google Scholar 

  24. Wartiovaara, J., Ofverstedt, L.G., Khoshnoodi, J., et al., Nephrin Strands Contribute To a Porous Slit Diaphragm Scaffold As Revealed by Electron Tomography, J. Clin. Invest., 2004, vol. 114, p. 1475.

    PubMed  CAS  Google Scholar 

  25. Kestila, M., Mannikko, M., Holmberg, C., et al., Congenital Nephritic Syndrome of the Finnish Type Maps To the Long Arm of Chromosome 19, Am. J. Hum. Genet., 1994, vol. 54, p. 754.

    Google Scholar 

  26. Van den Berg, J.G., van den Berg, W.M.A., Assmann, K.J., et al., Podocyte Foot Process Effacement Is Not Correlated with the Level of Proteinuria in Human Glomerulopathies, Kidney Int., 2004, vol. 66, p. 1901.

    Article  PubMed  Google Scholar 

  27. Datta, K., Li, J., Karumanchi, S.A., et al., Regulation of Vascular Permeability Factor/Vascular Endothelial Growth Factor (VPF/VEGF-A) Expression in Podocytes, Kidney Int., 2004, vol. 66, p. 1471.

    Article  PubMed  CAS  Google Scholar 

  28. Damiano, E.R., Benedict, C.R., Pakala, R., and Willerson, J.T., Endothelial-Dependent Procoagulant and Anticoagulant Mechanisms. Recent Advances in Understanding, Texas Heart Inst. J., 1994, vol. 21, p. 86.

    Google Scholar 

  29. Damiano, E.R., The Effect of the Endothelial-Cell Glycocalyx on the Motion of Red Blood Cells Through Capillaries, Microvasc. Res., 1998, vol. 55, p. 77.

    Article  PubMed  CAS  Google Scholar 

  30. Gitay-Goren, H., Soker, S., Vlodavsky, I., and Neufeld, G., The Binding of Vascular Endothelial Growth Factor to Its Receptors Is Dependent on Cell SurfaceAssociated Heparin-Like Molecules, J. Biol. Chem., 1992, vol. 267, p. 6093.

    PubMed  CAS  Google Scholar 

  31. Jeansson, M. and Haraldsson, B., Morphological and Functional Evidence for an Important Role of the Endothelial Cell Glycocalyx in the Glomerular Barrier, Am. J. Physiol. Renal. Physiol., 2006, vol. 290, p. F111.

    Article  PubMed  CAS  Google Scholar 

  32. Haldenby, K.A., Chappell, D.C., Winlove, C.P., et al., Focal and Regional Variations in the Composition of the Glycocalyx of Large Vessel Endothelium, J. Vasc. Res., 1994, vol. 31, p. 2.

    PubMed  CAS  Google Scholar 

  33. Sörensson, J., Björnson, A., Ohlson, M., et al., Synthesis of Sulfated Proteoglicans by Bovine Glomerular Endothelia Cells in Culture, Am. J. Physiol. Renal. Physiol., 2003, vol. 284, p. 373

    Google Scholar 

  34. Vink, H. and Duling, B.R., Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes, Leukocytes within Mammalian Capillaries, Circ. Res., 1996, vol. 79, p. 581.

    CAS  Google Scholar 

  35. Sörensson, J., Matejka, G.L., Ohlson, M., and Haraldsson, B., Human Endothelial Cells Produce Orosomucoid, An Important Component of the Capillary Barrier, Am. J. Physiol. Heart Circ. Physiol., 1999, vol. 276, p. 530.

    Google Scholar 

  36. Sörensson, J., Ohlson, M., Lindström, A., and Haraldsson, B., Glomerular Charge Selectivity for Peroxidase and Albumin at Low and Normal Ionic Strengths, Acta Physiol. Scand., 1998, vol. 163, p. 83

    Article  PubMed  Google Scholar 

  37. Sörensson, J., Ohlson, M., and Haraldsson, B., A Quantitative Analysis of the Glomerular Charge Barrier in the Rat, Am. J. Physiol. Renal. Physiol., 2001, vol. 280, p. 646.

    Google Scholar 

  38. Haraldsson, B., Nystrm, J., and Deen, W.M., Properties of the Glomerular Barrier and Mechanisms of Proteinuria, Physiol. Rev., 2008, vol. 88, no. 2, p. 451.

    Article  PubMed  CAS  Google Scholar 

  39. Huxley, V.H. and Willians, D.A., Role of a Glycocalyx on Coronary Arteriole Permeability to Proteins: Evidence from Enzyme Treatments, Am. J. Physiol. Herat Circ. Physiol., 2000, vol. 278, p. 1177.

    Google Scholar 

  40. Pavenstadt, H., The Charge for Going by Foot: Modifying the Surface of Podocytes, Exp. Nephrol., 1998, vol. 6, p. 98.

    Article  PubMed  CAS  Google Scholar 

  41. Pyke, C., Kristensen, P., Ostergaard, P.B., et al., Proteoglycan Expression in the Normal Rat Kidney, Nephron, 1997, vol. 77, p. 461.

    Article  PubMed  CAS  Google Scholar 

  42. Kerjaschki, D., Dysfunctions of Cell Biological Mechanisms of Visceral Epithelial Cell (Podocytes) in Glomerular Diseases, Kidney Int., 1994, vol. 45, no. 2, p. 300.

    Article  PubMed  CAS  Google Scholar 

  43. Haraldsson, B. and Nystrm, J., The Glomerular Endothelium: New Insights on Function and Structure, Curr. Opin. Nephrol. Hypertens., 2012, vol. 21, no. 3, p. 258.

    Article  PubMed  CAS  Google Scholar 

  44. Jefferson, J.A., Shankland, S.H., and Pichler, R.H., Proteinuria in Diabetic Kidney Disease: a Mechanistic Viewpoint, Kidney Int., 2008, vol. 74, p. 22.

    Article  PubMed  CAS  Google Scholar 

  45. Pavenstadt, H., Kriz, W., and Kretzler, M., Cell Biology of the Glomerular Podocyte, Physiol. Rev., 2003, vol. 83, p. 253.

    PubMed  CAS  Google Scholar 

  46. Rossi, V., Motita, H., Sormunen, R., et al., Heparin Sulfate Chains of Perlecan Are Indispensable in the Lens Capsule But Not Kidney, EMBO, 2003, vol. 122, p. 236.

    Google Scholar 

  47. Bolton, G.R., Deen, W.M., and Daniels, B.S., Assessment of the Charge Selectivity of Glomerular Basement Membrane Using Ficoll Sulfate, Am. J. Physiol. Renal. Fluid Elecrolyte Physiol., 1998, vol. 274, p. 889.

    Google Scholar 

  48. Tryggvasson, K., Unraveling the Mechanisms of Glomerular Ultrafiltration Nephrin, a Key Component of the Slit Diaphragm, J. Am. Soc. Nephrol., 1999, vol. 10, p. 2440.

    Google Scholar 

  49. Hjalmarsson, C., Ohlson, M., and Haraldsson, B., Puromycin Aminonucleoside Damages the Glomerular Size Barrier with Minimal Effects on Charge Density, Am. J. Physiol. Renal. Physiol., 2001, vol. 281, p. 503.

    Google Scholar 

  50. Blouch, K., Deen, W.M., Fauvel, J.P., et al., Molecular Configuration Size Selectivity in Healthy and Nephritic Human, Am. J. Physiol. Renal. Fluid Elecrolyte Physiol., 1997, vol. 273, p. 430.

    Google Scholar 

  51. Gorriz, J.L. and Martinez-Castelao, A., Proteinuria: Detection and Role in Native Renal Disease Progression, Transplant. Rev. (Orlando), 2012, vol. 26, no. 1, p. 3.

    Article  Google Scholar 

  52. Pearson, A.L., Colville-Nash, P., Kwan, J.T., and Dockrell, M.E., Albumin Induces Interleukin-6 Release from Primary Human Proximal Tubule Epithelial Cells, J. Nephrol, 2008, vol. 21, no. 6, p. 887.

    PubMed  CAS  Google Scholar 

  53. Welling, L.W. and Welling, D.J., Surface Areas of Brush Border and Lateral Cell Walls in the Rabbit Proximal Nephron, Kidney Int., 1975, vol. 8, p. 343.

    Article  PubMed  CAS  Google Scholar 

  54. Moestrup, S.K., Birn, H., Fischer, P.B., et al., Megalinmediated Endocytosis of Transcobalamin-Vitamin-B12 Complexes Suggests a Role of the Receptor in Vitamin-B12 Homeostasis, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 16, p. 8612.

    Article  PubMed  CAS  Google Scholar 

  55. Christensen, E.I., Gburek J. Protein Reabsorption in Renal Proximal Tubule-Function and Dysfunction in Kidney PathoPhysiology, Pediatr. Nephrol., 2004, vol. 19, p. 714.

    Article  PubMed  Google Scholar 

  56. Hocevar, B.A., Smine, A., Xu, X.-X., and Howe, P.H., The Adaptor Molecule Disabled-2 Links the Transforming Growth Factor Receptors to the Smad Pathway, EMBO J., 2001, vol. 20, no. 11, p. 2789.

    Article  PubMed  CAS  Google Scholar 

  57. Prunier, C. and Hocevar, B.A., Howe. P.H. Wnt Signaling: Physiol.ogy and Pathology, Growth Factors, 2004, vol. 22, no. 3, p. 141.

    Article  PubMed  CAS  Google Scholar 

  58. Suzuki, K.G., Kasai, R.S., Hirosawa, K.M., et al., Transient GPI-Anchored Protein Homodimers Are Units for Raft Organization and Function, Nat. Chem. Biol., 2012.

    Google Scholar 

  59. Amsellem, S., Gburek, J., Hamard, G., et al., Cubilin Is Essential for Albumin Reabsorption in the Renal Proximal Tubule, J. Am. Soc. Nephrol., 2010, vol. 21, no. 11, p. 1856.

    Article  CAS  Google Scholar 

  60. He, Q., Madsen, M., Kilkenney, A., et al., Amnionless Function Is Required for Cubilin Brush-Border Expression and Intrinsic Factor-Cobalamin (Vitamin B12) Absorption In Vivo, Blood, 2005, vol. 106, no. 4, p. 1447.

    Article  PubMed  CAS  Google Scholar 

  61. Pedersen, G.A., Chakraborty, S., Steinhauser, A.L., et al., AMN Directs Endocytosis of the Intrinsic Factor-Vitamin B(12) Receptor Cubam by Engaging ARH Or Dab2, Traffic, 2010, vol. 11, no. 5, p. 706.

    Article  PubMed  CAS  Google Scholar 

  62. Thelle, K., Christensen, E.I., Vorum, H., et al., Characterization of Proteinuria and Tubular Protein Uptake in a New Model of Oral L-Lysine Administration in Rats, Kidney Int., 2006, vol. 69, no. 8, p. 1333.

    PubMed  CAS  Google Scholar 

  63. Kaseda, R., Hosojima, M., Sato, H., and Saito, A., Role of Megalin and Cubilin in the Metabolism of Vitamin D(3), Ther. Apher. Dial, 2011, vol. 15, no. Suppl 1, p. 14.

    Article  PubMed  CAS  Google Scholar 

  64. Devuyst, O., Jouret, F., Auzanneau, C., and Courtoy, P.J., Chloride Channels and Endocytosis: New Insights from Dent’S Disease and ClC-5 Knockout Mice, Nephron Physiol., 2005, vol. 99, no. 3, p. 69.

    Article  CAS  Google Scholar 

  65. Reed, A.A., Loh, N.Y., Terryn, S., et al., CLC-5 and KIF3B Interact to Facilitate CLC-5 Plasma Membrane Expression, Endocytosis, and Microtubular Transport: Relevance to PathoPhysiol.ogy of Dent’s Disease, Am. J. Physiol. Renal. Physiol., 2010, vol. 298, no. 2, p. 365.

    Article  CAS  Google Scholar 

  66. Prabakaran, T., Christensen, E.I., Nielsen, R., and Verroust, P.J., Cubilin Is Expressed in Rat and Human Glomerular Podocytes, Nephrol. Dial. Transplant., 2012, vol. 27, no. 8, p. 3156.

    Article  PubMed  CAS  Google Scholar 

  67. Langelueddecke, C., Roussa, E., Fenton, R.A., et al., Lipocalin-2 (24p3/Neutrophil Gelatinase-Associated Lipocalin (NGAL)) Receptor Is Expressed in Distal Nephron and Mediates Protein Endocytosis, J. Biol. Chem., 2012, vol. 287, no. 1, p. 159.

    Article  PubMed  CAS  Google Scholar 

  68. Christensen, E.I. and Birn, H., Megalin and Cubulin: Multifunctional Endocytic Receptors, Nat. Rev. Mol. Cell Biol., 2002, vol. 3, p. 256.

    PubMed  CAS  Google Scholar 

  69. Saito, A., Sato, H., Iino, N., and Takeda, T., Molecular Mechanisms of Receptor-Mediated Endocytosis in the Renal Proximal Tubular Epithelium, J. Biomed. Biotechnol., 2010, vol. 2010, p. 403272.

    Article  PubMed  CAS  Google Scholar 

  70. Christensen, E.I. and Birn, H., Megalin and Cubilin: Synergistic Endocytic Receptors in Renal Proximal Tubule, Am. J. Physiol. Renal. Physiol., 2001, vol. 280, no. 4, p. 562.

    Google Scholar 

  71. Christensen, E.I., Birn, H., Verroust, P., and Moestrup, S.K., Megalin-Mediated Endocytosis in Renal Proximal Tubule, Ren. Fail, 1998, vol. 20, no. 2, p. 191.

    Article  PubMed  CAS  Google Scholar 

  72. Christensen, E.I., Verroust, P.J., and Nielsen, R., Receptor-Mediated Endocytosis in Renal Proximal Tubule, Pflugers Arch, 2009, vol. 458, p. 1039.

    Article  PubMed  CAS  Google Scholar 

  73. Zheng, G., Bachinsky, D.R., Stamenkovic, I., et al., Organ Distribution in Rats of Two Members of the Low-Density Lipoprotein Receptor Gene Family, Gp330 and LRP/Alpha 2MR, and the Receptor-Associated Protein (RAP), J. Histochem. Cytochem., 1994, vol. 42, no. 4, p. 531.

    Article  PubMed  CAS  Google Scholar 

  74. Marin, M. and McCluskey, R.T., Megalin-Mediated Transcytosis of Thyroglobulin by Thyroid Cells Is a Calmodulin-Dependent Process, Thyroid, 2000, vol. 10, no. 6, p. 461.

    Google Scholar 

  75. Lundgren, S., Carling, T., Hjlm, G., et al., Tissue Distribution of Human Gp330/Megalin, a Putative Ca(2+)-Sensing Protein, J. Histochem. Cytochem., 1997, vol. 45, no. 3, p. 383.

    Article  PubMed  CAS  Google Scholar 

  76. Petersen, H.H., Hilpert, J., Militz, D., et al., Functional Interaction of Megalin with the Megalin Binding Protein (MegBP), a Novel Tetratrico Peptide Repeat-Containing Adaptor Molecule, J. Cell Sci., 2003, vol. 116, p. 453.

    Article  PubMed  CAS  Google Scholar 

  77. von Kleist, L., Stahlschmidt, W., Bulut, H., et al., Role of the Clathrin Terminal Domain in Regulating Coated Pit Dynamics Revealed by Small Molecule Inhibition, Cell, 2011, vol. 146, no. 3, p. 471.

    Article  CAS  Google Scholar 

  78. Kastner, C., Pohl, M., Sendeski, M., et al., Effects of Receptor-Mediated Endocytosis and Tubular Protein Composition on Volume Retention in Experimental Glomerulonephritis, Am. J. Physiol. Renal. Physiol., 2009, vol. 296, no. 4, p. 902.

    Article  CAS  Google Scholar 

  79. Guo, J.K., Marlier, A., Shi, H., et al., Increased Tubular Proliferation As An Adaptive Response To Glomerular Albuminuria, J. Am. Soc. Nephrol., 2012, vol. 23, no. 3, p. 429.

    Article  PubMed  CAS  Google Scholar 

  80. Peruchetti, D.B., Pinheiro, A.A., Landgraf, S.S., et al., (Na+ + K+)-ATPase Is a Target for Phosphoinositide 3-Kinase/Protein Kinase B and Protein Kinase C Pathways Triggered by Albumin, J. Biol. Chem., 2011, vol. 286, no. 52, p. 45041.

    Article  PubMed  CAS  Google Scholar 

  81. Vicinanza, M., Di Campli, A., Polishchuk, E., et al., OCRL Controls Trafficking Through Early Endosomes Via PtdIns4.5P2-Dependent Regulation of Endosomal Actin, EMBO J., 2011, vol. 30, no. 24, p. 4970.

    Article  PubMed  CAS  Google Scholar 

  82. Dambournet, D., Machicoane, M., Chesneau, L., et al., Rab35 GTPase and OCRL Phosphatase Remodel Lipids and F-Actin for Successful Cytokinesis, Nat. Cell Biol., 2011, vol. 13, no. 8, p. 981.

    Article  PubMed  CAS  Google Scholar 

  83. Weyer, K., Storm, T., Shan, J., et al., Mouse Model of Proximal Tubule Endocytic Dysfunction, Nephrol. Dial. Transplant, 2011, vol. 26, no. 11, p. 3446.

    Article  PubMed  Google Scholar 

  84. Kantarci, S., Al-Gazali, RL., Hill, S., et al., Mutations in LRP2, Which Encodes the Multiligand Receptor Megalin, Cause Donnai-Barrow and Facio-Oculo-Acoustico-Renal Syndromes, Nat. Genet., 2007, vol. 39, no. 8, p. 957.

    CAS  Google Scholar 

  85. Gerritsen, K.G., Peters, H.P., Nguyen, T.Q., et al., Renal Proximal Tubular Dysfunction Is a Major Determinant of Urinary Connective Tissue Growth Factor Excretion, Am. J. Physiol. Renal. Physiol., 2010, vol. 298, no. 6, p. 1457.

    Article  CAS  Google Scholar 

  86. Azuma, K.K., Balkovetz, D.F., Magyar, C.E., et al., Renal Na_/H_Exchanger Isoforms and Their Regulation by Thyroid Hormone, Am. J. Physiol. Cell Physiol., 2003, vol. 270, p. 585.

    Google Scholar 

  87. McDonough, A.A., Magyar, C.E., and Komatsu, Y., Expression of Na_-K_-ATPase Alpha- and Beta-Subunits Along Rat Nephron: Isoform Specificity and Response To Hypokalemia, Am. J. Physiol. Cell Physiol., 1994, vol. 267, p. 901.

    Google Scholar 

  88. Zhang, Y., Mircheff, A.K., Hensley, C.B., et al., Rapid Redistribution and Inhibition of Renal Sodium Transporters during Acute Pressure Natriuresis, Am. J. Physiol. Renal. Fluid Electrolyte Physiol., 1996, vol. 270, p. 1004.

    Google Scholar 

  89. Hensley, C.B., Bradley, M.E., and Mircheff, A.K., Parathyroid Hormone-Induced Translocation of Na-H Antiporters in Rat Proximal Tubules, Am. J. Physiol. Cell Physiol., 1989, vol. 257, p. 637.

    Google Scholar 

  90. Hensley, C.B., Bradley, M.E., and Mircheff, A.K., Subcellular Distribution of Na_/H_Antiport Activity in Rat Renal Cortex, Kidney Int., 1990, vol. 37, p. 707.

    Article  PubMed  CAS  Google Scholar 

  91. Zhang, Y., Magyar, C.E., Norian, J.M., et al., Reversible Effects of Acute Hypertension on Proximal Tubule Sodium Transporters, Am. J. Physiol. Cell Physiol., 1998, vol. 274, p. 1090.

    Google Scholar 

  92. Yip, K.P., Tse, C.M., McDonough, A.A., and Marsh, D.J., Redistribution of Na_/H_exchanger Isoform NHE3 in Proximal Tubules Induced by Acute and Chronic Hypertension, Am. J. Physiol. Renal. Physiol., 1998, vol. 275, p. 565.

    Google Scholar 

  93. Yip, K.P., Wagner, A.J., and Marsh, D.J., Detection of Apical Na_/H_Exchanger Activity Inhibition in Proximal Tubules Induced by Acute Hypertension, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, vol. 279, p. 1412.

    Google Scholar 

  94. Zhang, Y., Norian, J.M., Magyar, C.E., et al., In Vivo PTH Provokes Apical NHE3 and NaPi2 Redistribution and Na-K-ATPase Inhibition, Am. J. Physiol. Renal. Physiol., 1999, vol. 276, p. 711.

    Google Scholar 

  95. Maunsbach, A.B., Absorption of I-125-Labeled Homologous Albumin by Rat Kidney Proximal Tubule Cells. A Study of Microperfused Single Proximal Tubules by Electron Microscopic Autoradiography and Histochemistry, J. Ultrastruct. Res., 1996, vol. 15, p. 197.

    Article  Google Scholar 

  96. Maunsbach, A.B., The Influence of Different Fixatives and Fixation Methods on the Ultrastructure of Rat Kidney Proximal Tubule Cells. I. Comparison of Different Perfusion Fixation Methods and of Glutaraldehyde, Formaldehyde and Osmium Tetroxide Fixatives, J. Ultrastruct. Res, 1996, vol. 15, p. 242.

    Article  Google Scholar 

  97. Yang, L.E., Maunsbach, A.B., Leong, P.K., and McDonough, A.A., Differential Traffic of Proximal Tubule Na-Transporters during Hypertension Or PTH: NHE3 to Base of Microvilli Vs. NaPi2 to Endosomes, Am. J. Physiol. Renal. Physiol., 2004, vol. 287, p. 896.

    Article  CAS  Google Scholar 

  98. Biemesderfer, D., Mentone, S.A., Mooseker, M., and Hasson, T., Expression of Myosin VI within the Early Endocytic Pathway in Adult and Developing Proximal Tubules, Am. J. Physiol. Renal. Physiol., 2002, vol. 282, p. 785.

    Google Scholar 

  99. Yang, L.E., Maunsbach, A.B., Leong, P.K., and McDonough, A.A., Redistribution of Myosin VI from Top To Base of Proximal Tubule Microvilli during Acute Hypertension, J. Am. Soc. Nephrol, 2005, vol. 16, p. 2890.

    Article  PubMed  CAS  Google Scholar 

  100. Blaine, J., Okamura, K., Giral, H., et al., PTH-Induced Internalization of Apical Membrane NaPi2a: Role of Actin and Myosin VI, Am. J. Physiol. Cell Physiol., 2009, vol. 297, p. 1339.

    Article  CAS  Google Scholar 

  101. McDonough, A.A., Motoring Down the Microvilli. Focus on PTH-Induced Internalization of Apical Membrane NaPi2a: Role of Actin and Myosin VI, Am. J. Physiol. Cell Physiol., 2009, vol. 297, p. 1331.

    Article  CAS  Google Scholar 

  102. Riquier, A.D., Lee, D.H., and McDonough, A.A., Renal NHE3 and NaPi2 Partition Into Distinct Membrane Domains, Am. J. Physiol. Cell Physiol., 2009, vol. 296, no. 4, p. 900.

    Article  CAS  Google Scholar 

  103. Biemesderfer, D., Nagy, T., DeGray, B., and Aronson, P.S., Specific Association of Megalin and the Na+/H+ Exchanger Isoform NHE3 in the Proximal Tubule, J. Biol. Chem., 1999, vol. 274, no. 25, p. 17518.

    Article  PubMed  CAS  Google Scholar 

  104. Biemesderfer, D., DeGray, B., and Aronson, P.S., Active (9.6 S) and Inactive (21 S) Oligomers of NHE3 in Microdomains of the Renal Brush Border, J. Biol. Chem., 2001, vol. 276, no. 13, p. 10161.

    Article  PubMed  CAS  Google Scholar 

  105. Zachos, N.C., Hodson, C., Kovbasnjuk, O., et al., Elevated Intracellular Calcium Stimulates NHE3 Activity by An IKEPP (NHERF4) Dependent Mechanism, Cell Physiol. Biochem., 2008, vol. 22, nos. 5–6, p. 693.

    Article  PubMed  CAS  Google Scholar 

  106. Cunningham, R., Biswas, R., Steplock, D., et al., Role of NHERF and Scaffolding Proteins in Proximal Tubule Transport, Urol. Res, 2010, vol. 38, no. 4, p. 257.

    Article  PubMed  CAS  Google Scholar 

  107. Weinman, E.J., Biswas, R., Steplock, D., et al., Sodium-Hydrogen Exchanger Regulatory Factor 1 (NHERF-1) Transduces Signals That Mediate Dopamine Inhibition of Sodium-Phosphate Co-Transport in Mouse Kidney, J. Biol. Chem., 2010, vol. 285, no. 18, p. 13454.

    Article  PubMed  CAS  Google Scholar 

  108. Courbebaisse, M., Leroy, C., Bakouh, N., et al., A New Human NHERF1 Mutation Decreases Renal Phosphate Transporter NPT2a Expression by a PTH-Independent Mechanism, PLoS One, 2012, vol. 7, no. 4, p. e34764.

    Article  PubMed  CAS  Google Scholar 

  109. Romero, G., von Zastrow, M., and Friedman, P.A., Role of PDZ Proteins in Regulating Trafficking, Signaling, and Function of GPCRs: Means, Motif, and Opportunity, Adv. Pharmacol, 2011, vol. 62, p. 279.

    Article  PubMed  CAS  Google Scholar 

  110. Kruger, W.A., Monteith, G.R., and Poronnik, P., The Plasma Membrane Ca(2+)-ATPase: Regulation by PSD-95/Dlg/Zo-1 Scaffolds, Int. J. Biochem. Cell Biol., 2010, vol. 42, no. 6, p. 805.

    Article  PubMed  CAS  Google Scholar 

  111. Hryciw, D.H., Jenkin, K.A., Simcocks, A.C., et al., The Interaction between Megalin and ClC-5 Is Scaffolded by the Na?-H? Exchanger Regulatory Factor 2 (NHERF2) in Proximal Tubule Cells, Int. J. Biochem. Cell Biol., 2012, vol. 44, no. 5, p. 815.

    Article  PubMed  CAS  Google Scholar 

  112. Hosaka, K., Takeda, T., Iino, N., et al., Megalin and Nonmuscle Myosin Heavy Chain IIA Interact with the Adaptor Protein Disabled-2 in Proximal Tubule Cells, Kidney Int, 2009, vol. 75, no. 12, p. 308.

    Article  CAS  Google Scholar 

  113. Hryciw, D.H., Ekberg, J., Pollock, C.A., and Poronnik, P., ClC-5: a Chloride Channel with Multiple Roles in Renal Tubular Albumin Uptake, Int. J. Biochem. Cell Biol., 2006, vol. 38, no. 7, p. 1036.

    Article  PubMed  CAS  Google Scholar 

  114. Hryciw, D.H., Ekberg, J., Ferguson, C., et al., Regulation of Albumin Endocytosis by PSD95/Dlg/ZO-1 (PDZ) Scaffolds. Interaction of Na+-H+ Exchange Regulatory Factor-2 with ClC-5, J. Biol. Chem., 2006, vol. 281, no. 23, p. 16068.

    Article  PubMed  CAS  Google Scholar 

  115. Hryciw, D.H., Kruger, W.A., Briffa, J.F., et al., Sgk-1 Is a Positive Regulator of Constitutive Albumin Uptake in Renal Proximal Tubule Cells, Cell Physiol. Biochem., 2012, vol. 30, no. 5, p. 1215.

    Article  PubMed  CAS  Google Scholar 

  116. Stevens, V.A., Saad, S., Poronnik, P., et al., The Role of SGK-1 in Angiotensin II-Mediated Sodium Reabsorption in Human Proximal Tubular Cells, Nephrol. Dial. Transplant., 2008, vol. 23, no. 6, p. 1834.

    Article  PubMed  CAS  Google Scholar 

  117. Slattery, C., Jenkin, K.A., Lee, A., et al., Na+-H+ Exchanger Regulatory Factor 1 (NHERF1) PDZ Scaffold Binds An Internal Binding Site in the Scavenger Receptor Megalin, Cell Physiol. Biochem., 2011, vol. 27, no. 2, p. 171.

    Article  PubMed  CAS  Google Scholar 

  118. Wang, B., Means, C.K., Yang, Y., et al., Ezrin-Anchored Protein Kinase A Coordinates Phosphorylation-Dependent Disassembly of a NHERF1 Ternary Complex to Regulate Hormone-Sensitive Phosphate Transport, J. Biol. Chem., 2012, vol. 287, no. 29, p. 24148.

    Article  PubMed  CAS  Google Scholar 

  119. Courbebaisse, M., Leroy, C., Bakouh, N., et al., A New Human NHERF1 Mutation Decreases Renal Phosphate Transporter NPT2a Expression by a PTH-Independent Mechanism, PLoS One, 2012, vol. 7, no. 4, p. e34764. doi: 10.1371/journal.phone.0034764.

    Article  PubMed  CAS  Google Scholar 

  120. Desmond, M.J., Lee, D., Fraser, S.A., et al., Tubular Proteinuria in Mice and Humans Lacking the Intrinsic Lysosomal Protein SCARB2/Limp-2, Am. J. Physiol. Renal. Physiol., 2011, vol. 300, no. 6, p. F1437.

    Article  PubMed  CAS  Google Scholar 

  121. Nielsen, R., Courtoy, P.J., Jacobsen, C., et al., Endocytosis Provides a Major Alternative Pathway for Lysosomal Biogenesis in Kidney Proximal Tubular Cells, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 13, p. 407.

    Article  CAS  Google Scholar 

  122. Riquier-Brison, A.D., Leong, P.K., Pihakaski-Maunsbach, K., and McDonough, A.A., Angiotensin II Stimulates Trafficking of NHE3, NaPi2, and Associated Proteins Into the Proximal Tubule Microvilli, Am. J. Physiol. Renal. Physiol., 2010, vol. 298, no. 1, p. 177.

    Article  CAS  Google Scholar 

  123. Edeling, M.A., Smith, C., and Owen, D., Life of a Clathrin Coat: Insights from Clathrin and AP Structures, Nature Rev. Molecular Cell Biol, 2006, vol. 7, no. 1, p. 32.

    Article  CAS  Google Scholar 

  124. Thurau, K., Renal Na-Reabsorption and O2-Uptake in Dogs during Hypoxia and Hydrochlorothiazide Infusion, Proc. Soc. Exp. Biol. Med, 1961, vol. 106, p. 714.

    PubMed  CAS  Google Scholar 

  125. Deetjen, P., Brechtelsbauer, H., and Kramer, K., Hemodynamics of the Renal Medulla. 3. Dye Passage Times in the External Medullary Zone and the Renal Vein the Blood Circulation Distribution in the Kidney, Pflugers Arch. Gesamte Physiol. Menschen Tiere, 1964, vol. 279, p. 281.

    Article  PubMed  CAS  Google Scholar 

  126. Safirstein, R., Glassman, V.P., and DiScala, V.A., Effects of An NH4Cl-Induced Metabolic Acidosis on Salt and Water Reabsorption in Dog Kidney, Am. J. Physiol., 1973, vol. 225, p. 805.

    PubMed  CAS  Google Scholar 

  127. Wang, T., Egbert, A.L.Jr., Aronson, P.S., and Giebisch, G., Effect of Metabolic Acidosis on NaCl Transport in the Proximal Tubule, Am. J. Physiol. Renal. Physiol., 1998, vol. 274, p. 1015.

    Google Scholar 

  128. Nangaku, M., Chronic Hypoxia and Tubulointerstitial Injury: a Final Common Pathway To End-Stage Renal Failure, J. Am. Soc. Nephrol, 2006, vol. 17, p. 17.

    Article  PubMed  CAS  Google Scholar 

  129. Inoue, B.H., Santos, L., Pessoa, T.D., et al., Increased NHE3 Abundance and Transport Activity in Renal Proximal Tubule of Rats with Heart Failure, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2012, vol. 302, no. 1, p. 166.

    Article  CAS  Google Scholar 

  130. Weiner, I.D. and Verlander, J.W., Role of NH3 and NH4+ Transporters in Renal Acid-Base Transport, Am. J. Physiol. Renal. Physiol., 2011, vol. 300, no. 1, p. 11.

    Article  CAS  Google Scholar 

  131. Stehberger, P.A., Schulz, N., Finberg, K.E., et al., Localization and Regulation of the ATP6V0A4 (a4) Vacuolar H+-ATPase Subunit Defective in An Inherited Form of Distal Renal Tubular Acidosis, J. Am. Soc. Nephrol, 2003, vol. 14, no. 12, p. 3027.

    Article  PubMed  CAS  Google Scholar 

  132. Wagner, C.A., Devuyst, O., Bourgeois, S., and Mohebbi, N., Regulated Acid-Base Transport in the Collecting Duct, Pflugers Arch, 2009, vol. 458, no. 1, p. 137.

    Article  PubMed  CAS  Google Scholar 

  133. Padia, S.H., Kemp, B.A., Howell, N.L., et al., Mechanisms of Dopamine D(1) and Angiotensin Type 2 Receptor Interaction in Natriuresis, Hypertension, 2012, vol. 59, no. 2, p. 437.

    Article  PubMed  CAS  Google Scholar 

  134. Ellis, B., Li, X.C., Miguel-Qin, E., et al., Evidence for a Functional Intracellular Angiotensin System in the Proximal Tubule of the Kidney, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2012, vol. 302, no. 5, p. 494.

    Article  CAS  Google Scholar 

  135. Reilly, R.F. and Huang, C.L., The Mechanism of Hypocalciuria with NaCl Cotransporter Inhibition, Nat. Rev. Nephrol., 2011, vol. 7, no. 11, p. 669.

    Article  PubMed  CAS  Google Scholar 

  136. Simão, S., Gomes, P., and Pinho, M.J., Soares-Da-Silva P.H. 2 O2 Stimulates Cl- /HCO 3-Exchanger Activity Through Oxidation of Thiol Groups in Immortalized SHR Renal Proximal Tubular Epithelial Cells, J. Cell Biochem, 2011, vol. 112, no. 12, p. 3660.

    Article  PubMed  CAS  Google Scholar 

  137. Isaka, Y., Kimura, T., and Takabatake, Y., The Protective Role of Autophagy Against Aging and Acute Ischemic Injury in Kidney Proximal Tubular Cells, Autophagy, 2011, vol. 7, no. 9, p. 1085.

    Article  PubMed  CAS  Google Scholar 

  138. Heublein, S., Kazi, S., Ogmundsdóttir, M.H., et al., Proton-Assisted Amino-Acid Transporters Are Conserved Regulators of Proliferation and Amino-Acid-Dependent mTORC1 Activation, Oncogene, 2010, vol. 29, no. 28, p. 4068.

    Article  PubMed  CAS  Google Scholar 

  139. Crajoinas, R.O., Oricchio, F.T., Pessoa, T.D., et al., Mechanisms Mediating the Diuretic and Natriuretic Actions of the Incretin Hormone Glucagon-Like Peptide-1, Am. J. Physiol. Renal. Physiol., 2011, vol. 301, no. 2, p. F355.

    Article  PubMed  CAS  Google Scholar 

  140. Thwaites, D.T. and Anderson, C.M., The SLC36 Family of Proton-Coupled Amino Acid Transporters and Their Potential Role in Drug Transport, Br. J. Pharmacol, 2011, vol. 164, no. 7, p. 1802.

    Article  PubMed  CAS  Google Scholar 

  141. Miyauchi, S., Abbot, E.L., Zhuang, L., et al., Isolation and Function of the Amino Acid Transporter PAT1 (Slc36a1) from Rabbit and Discrimination between Transport via PAT1 and System IMINO in Renal Brush-Border Membrane Vesicles, Mol. Membr. Biol, 2005, vol. 22, no. 6, p. 549.

    Article  PubMed  CAS  Google Scholar 

  142. Levillain, O., Expression and Function of Arginine-Producing and Consuming-Enzymes in the Kidney, Amino Acids, 2012, vol. 42, no. 4, p. 1237.

    Article  PubMed  CAS  Google Scholar 

  143. Taub, M.L., Springate, J.E., and Cutuli, F., Reduced Phosphate Transport in the Renal Proximal Tubule Cells in Cystinosis Is Due to Decreased Expression of Transporters Rather Than An Energy Defect, Biochem. Biophys. Res. Commun., 2011, vol. 407, no. 2, p. 355.

    Article  PubMed  CAS  Google Scholar 

  144. Giral, H., Lanzano, L., Caldas, Y., et al., Role of PDZK1 Protein in Apical Membrane Expression of Renal Sodium-Coupled Phosphate Transporters, J. Biol. Chem., 2011, vol. 286, no. 17, p. 15032.

    Article  PubMed  CAS  Google Scholar 

  145. Sangalli, F., Carrara, F., Gaspari, F., et al., Effect of ACE Inhibition on Glomerular Permselectivity and Tubular Albumin Concentration in the Renal Ablation Model, Am. J. Physiol. Renal. Physiol., 2011, vol. 300, no. 6, p. 1291.

    Article  CAS  Google Scholar 

  146. Walmsley, S.J., Freund, D.M., and Curthoys, N.P., Proteomic Profiling of the Effect of Metabolic Acidosis on the Apical Membrane of the Proximal Convoluted Tubule, Am. J. Physiol. Renal. Physiol., 2012, vol. 302, no. 11, p. F1465.

    Article  PubMed  CAS  Google Scholar 

  147. Banday, A.A. and Lokhandwala, M.F., Oxidative Stress Causes Renal Angiotensin II Type 1 Receptor Upregulation, Na+/H+ Exchanger 3 Overstimulation, and Hypertension, Hypertension, 2011, vol. 57, no. 3, p. 45.

    Article  CAS  Google Scholar 

  148. Good, D.M., Zürbig, P., Argils, A., et al., Naturally Occurring Human Urinary Peptides for Use in Diagnosis of Chronic Kidney Disease, Mol. Cell Proteomics, 2010, vol. 9, no. 11, p. 2424.

    Article  PubMed  Google Scholar 

  149. Decramer, S., Gonzalez De Peredo A., Breuil B. et al. Urine in Clinical Proteomics, Mol. Cell Proteomics, 2008, vol. 7, no. 10, p. 1850.

    Article  PubMed  CAS  Google Scholar 

  150. Medvedeva, N.V., Ipatova, O.M., Ivanov, Iu.D., et al., Nanobiotechnology and Nanomedicine, Biomed. Khim, 2006, vol. 52, no. 6, p. 529.

    PubMed  CAS  Google Scholar 

  151. Walther, T.C. and Mann, M., Mass Spectrometry-Based Proteomics in Cell Biology, J. Cell Biol., 2010, vol. 190, no. 4, p. 491.

    Article  PubMed  CAS  Google Scholar 

  152. Gallien, S., Peterman, S., Kiyonami, R., et al., Domon BHighly Multiplexed Targeted Proteomics Using Precise Control of Peptide Retention Time, Proteomics, 2012, vol. 12, no. 8, p. 1122.

    Article  PubMed  CAS  Google Scholar 

  153. Pakharukova, N.A., Pastushkova, L.Kh., Trifonova, O.P., et al., Variability of Low-Molecular-Weight Serum Subproteome in Healthy Humans under the Conditions of Normal Vital Activity, Hum. Physiology, 2011, vol. 37, no. 2, p. 77.

    CAS  Google Scholar 

  154. Trifonova, O., Larina, I., Grigoriev, A., et al., Application of 2-DE for Studying the Variation of Blood Proteome (Special Report) Expert Rev. Proteomics, 2010, vol. 7 (3), p. 431

    PubMed  CAS  Google Scholar 

  155. Larina, I.M., Kolchanov, N.A., Dobrokhotov, I.V., et al., Reconstruction of Associative Protein Networks Connected with Processes of Sodium Exchange Regulation and Sodium Deposition in Healthy Volunteers Based on Urine Proteome Analysis, Hum. Physiology, 2012, vol. 38, no. 3, p. 107.

    CAS  Google Scholar 

  156. Pastushkova, L.Kh., Valeeva, O.A., Dobrochotov, I.V., and Larina, I.M., Changes of Healthy Human Urine and Serum Proteome Profile during 5-Day “Dry” Immersion, 33th Annual ISGP Meeting Aberdeen.UK. Book of Abstracts, 2012, p. 100.

    Google Scholar 

  157. Dobrokhotov, I.V., Pastushkova, L.Kh., Larina, I.M., and Nikolaev, E.N., Study of Urine Proteome in Healthy Humans, Hum. Physiol., 2011, vol. 37, no. 7, p. 777.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.M. Larina, L.Kh. Pastushkova, K.S. Kireev, A.I. Grigoriev, 2013, published in Fiziologiya Cheloveka, 2013, Vol. 39, No. 2, pp. 43–59.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larina, I.M., Pastushkova, L.K., Kireev, K.S. et al. Formation of the urine proteome of healthy humans. Hum Physiol 39, 147–161 (2013). https://doi.org/10.1134/S0362119713020072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119713020072

Keywords

Navigation