Skip to main content
Log in

Factors affecting the variability of the central mechanisms for maintaining bilingualism

  • Published:
Human Physiology Aims and scope Submit manuscript

“The human brain, in all its details, … even as fine as microprocessors and molecular processes, is adapted precisely to speech and thinking operations…”.

P.K. Anokhin

Abstract

The article discusses the probable role of many factors that determine the individual variety of the neurophysiological mechanisms that provide the opportunity to learn and use fluently two or more languages. The formation of the speech function is affected by both the general factors for bilinguals and monolinguals, as well as by the specific characteristic of bilingualism. General factors include genetic and environmental impacts explaining the diversity of individual options for the development of the morphofunctional organization of the speech function. Bilinguals, obviously, have an even wider variation of the central maintenance of speech ability, due to the combination of different conditions that influence the language environment, which include the age of second language acquisition, the language proficiency, the linguistic similarity of the languages, the method of their acquisition, intensity of use, and the area where each language is used. The influence of these factors can be mediated in different ways by the individual characteristics of the bilingual’s brain. Being exposed to two languages from the first days of life, the child uses for the development of speech skills the unique features of the brain that exist only at the initial stages of postnatal ontogenesis. At an older age, mastering a second language requires much more effort, when, in the course of maturation, the brain acquires new additional possibilities but permanently loses that special “bonus” that nature gives to a small child only in the first months of life. Large individual variability patterns of activation of the cortex during verbal activity in older bilinguals, compared with the younger ones, allows us to assume that the brain of the older bilingual mastering a new language is forced to manipulate a large number of backup mechanisms, and this is reflected in an increase in the variation of the cerebral processes responsible for speech functions. In addition, there is a serious reason to believe that learning a second language contributes to the expansion of the functional capabilities of the brain and creates the basis for successful cognitive activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anokhin, P.K., Za tvorcheskoe sotrudnichestvo filosofov s fiziologami. Leninskaya teoriya otrazheniya i sovremennaya nauka (For the Creative Cooperation of Philosophers and Physiologists. Lenin Theory of Reflection and Modern Science), Moscow, 1966.

  2. Luria, A.R., Yazyk i soznanie (Language and Consciousness), Moscow: Mos. Gos. Univ., 1979.

    Google Scholar 

  3. Mechelli, A., Crinion, J.T., Noppeney, U., et al., Neurolinguistics: Structural Plasticity in the Bilingual Brain, Nature, 2004, vol. 431, p. 757.

    PubMed  CAS  Google Scholar 

  4. Kovelman, I., Baker, S.A., and Petitto, L.-A., Bilingual and Monolingual Brains Compared: A Functional Magnetic Resonance Imaging Investigation of Syntactic Processing and a Possible “Neural Signature” of Bilingualism, J. Cogn. Neurosci., 2008, vol. 20, no. 1, p. 153.

    PubMed  Google Scholar 

  5. Weinreich, U., Languages in Contact: Findings and Problems, Hague: Mouton, 1974.

    Google Scholar 

  6. Shcherba, L.V., On Bilingualism, in Yazykovaya sistema i rechevaya deyatel’nost’ (Language System and Speech Activity), Leningrad, 1974, p. 313.

  7. Bloomfield, L. Language, New York: Henry Holtz, 1933.

    Google Scholar 

  8. MacNamara, J., The Effect of Instruction in a Weaker Language, Social Issues, 1967, vol. 23, p. 121.

    Google Scholar 

  9. Imedadze, N.V., Eksperimental’no-psikhologicheskoe issledovanie ovladeniya i vladeniya vtorym yazykom (Experimental-Psychological Study of Second Language Acquisition and Proficiency), Tbilisi, 1979.

  10. Bell, R., Sociolinguistics: Goals, Approches, and Problems, 1976.

  11. Grosjean, F., Life with Two Languages: An Introduction to Bilingualism, Cambridge: Harvard University Press, 1982.

    Google Scholar 

  12. Bishop, D.V., Adams, C.V., and Norbury, C.F., Distinct Genetic Influences on Grammar and Phonological Short-Term Memory Deficits: Evidence from 6-Year Old Twins, Genes, Brain Behav., 2006, vol. 5, p. 158.

    CAS  Google Scholar 

  13. Kang, Ch. and Drayna, D., Genetics of Speech and Language Disorders, Annu. Rev. Genomics. Hum. Genet., 2011, vol. 12, p. 145.

    PubMed  CAS  Google Scholar 

  14. Grigorenko, E.L., Speaking Genes Or Genes for Speaking? Deciphering the Genetics of Speech and Language, J. Child Psychol. Psychiatry, 2009, vol. 50, nos. 1–2, p. 116.

    PubMed  Google Scholar 

  15. Lai, C.S., Fisher, S.E., Hurst, J.A., et al., A Forkhead-Domain Gene Is Mutated in a Severe Speech and Language Disorder, Nature, 2001, vol. 413, p. 519.

    PubMed  CAS  Google Scholar 

  16. Hurst, J.A., Baraitser, M., Auger, E., et al., An Extended Family with a Dominantly Inherited Speech Disorder, Develop. Med. Child Neurol., 1990, vol. 32, p. 352.

    PubMed  CAS  Google Scholar 

  17. Sukhanov, V.A. and Piruzyan, L.A., Farmakogeneticheskie problemy v meditsine (Farmacological Problems in Medicine), Moscow: Meditsina, 2009.

    Google Scholar 

  18. Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka (Brain Development and Formation of Cognitive Activity in Children), Farber, D.A. and Bezrukikh, M.M, Ed., Moscow: Moskovskii Psikhologo-Sotsial’nyi Institut; Voronezh: Modek, 2009.

    Google Scholar 

  19. The Cognitive Neuroscience of Second Language Acquisition, Gullberg, M., Indefrey, P., and Malden, M.A., Ed., Oxford: Blackwell, 2006.

    Google Scholar 

  20. Dehorter, N., Vinay, L., Hammond, C., and Ben-Ari, Y., Timing of Developmental Sequences in Different Brain Structures: Physiological and Pathological Implications, Eur. J. Neurosci., 2012, vol. 35, p. 1846.

    PubMed  CAS  Google Scholar 

  21. Vygotskii, L.S., Psikhologiya razvitiya cheloveka (Psychology of Human Development), Moscow: Smysl,2005.

    Google Scholar 

  22. Simernitskaya, E.G., Mozg cheloveka i psikhicheskie protsessy v ontogeneze (Human Brain and Mental Processes in Ontogenesis), Moscow: MGU, 1985.

    Google Scholar 

  23. Lenroot, R.K. and Giedd, J.N., Brain Development in Children and Adolescents: Insights from Anatomical Magnetic Resonance Imaging, Neurosci. Biobehav. Rev., 2006, vol. 30, no. 6, p. 718.

    PubMed  Google Scholar 

  24. Moore, R., Vadeyar, S., Fulford, J., et al., Antenatal Determination of Fetal Brain Activity in Response to an Acoustic Stimulation Using FMRI, Hum. Brain Mapp., 2001, vol. 12, no. 2, p. 94.

    PubMed  CAS  Google Scholar 

  25. Lazarev, M.L., Mamalysh, ili Rozhdenie do rozhdeniya (Learning Before Birth. Every Child Deserves Giftedness), Moscow: OLMA Media Grupp, 2007.

    Google Scholar 

  26. Krasnoshchekova, E.I., Zykin, P.A., Tkachenko, L.A., and Smolina, T.Yu., Characteristics of Human Cortical Pyramidal Neuron Development during the Second Gestational Trimester, Hum. Physiol., 2010, vol. 36, no. 4, p. 427.

    Google Scholar 

  27. Hunttenlocher, P.R. and Dabholkar, A.S., Regional Differences in Synaptogenesis in Human Cerebral Cortex, J. Comp. Neurol., 1997, vol. 387, no. 2, p. 167.

    Google Scholar 

  28. Mrzljak, L. and Goldman-Rakic, P.S., Acetylcholinesterase Reactivity in the Frontal Cortex of Human and Monkey: Contribution of AChE-Rich Pyramidal Neurons, J. Comp. Neurol., 1992, vol. 324, no. 2, p. 261.

    PubMed  CAS  Google Scholar 

  29. Bourgeois, J.P., Synaptogenesis, Heterochrony and Epigenesist in Mammalian Neocortex, Acta Paediatric, vol. 422, no. Suppl. 1997, p. 27.

    CAS  Google Scholar 

  30. Rakic, P., Bourgeois, J.P., Eckenhoff, M.F., et al., Concurrent Overproduction of Synapses in Diverse Regions of the Primate Cerebral Cortex, Science, 1986, vol. 232, no. 4747, p. 232.

    PubMed  CAS  Google Scholar 

  31. Huisman, T.A., Martin, E., Kubic-Huch, R., and Marincek, B., Fetal Magnetic Resonance Imaging of the Brain: Technical Consideretion and Normal Brain Development, Eur. Radiol., 2002, vol. 12, no. 8, p. 1941.

    PubMed  Google Scholar 

  32. Levitt, P., Structural and Functional Maturation of the Developing Primate Brain, J. Pediatr., 2003, vol. 143, no. 4, p. 35.

    Google Scholar 

  33. Abovyan, V.A., Arutyunova, A.S., Glezer, I.I., and Mokhova, T.M., Temporal Region. Inner Geniculate Body, Auditory Analyzer, Razvitie mozga rebenka (Development of Child Brain), Sarkisov, S.A, Ed., Moscow: Meditsina, 1965.

    Google Scholar 

  34. Conel, J. Le Roy, Postnatal Development of the Human Cerebral Cortex, Cambridge, 1939–1963, vols. I–VII.

  35. Shevchenko, Yu.G., Razvitie kory mozga cheloveka v svete ontofilogeneticheskikh sootnoshenii (Development of Human Brain Cortex in Terms of Phylogenetic Relationships), Moscow: Meditsina, 1972.

    Google Scholar 

  36. Huttenlocher, J., Vasilyeva, M., Cymerman, E., and Levine, S., Language Input and Child Syntax, Cogn. Psychol., 2002, vol. 45, no. 3, p. 337.

    PubMed  Google Scholar 

  37. Tsitseroshin, M.N. and Shepoval’nikov, A.N., Stanovlenie integrativnoi funktsii mozga, (Formation of Integrative Brain Function), Bekhtereva, N.P, Ed., St. Petersburg: Nauka, 2009.

    Google Scholar 

  38. Luria, A.R., Lobnye doli i regulyatsiya psikhicheskikh protsessov (Frontal Lobes and Regulation of Mental Processes), Moscow, 1966.

  39. Goldberg, E., The Executive Brain: Frontal Lobes and the Civilized Mind, New York: Oxford Univ. Press, 2001.

    Google Scholar 

  40. Tsekhmistrenko, T.A., Vasil’eva, V.A., Shumeiko, N.S., and Chernykh, N.A., Structural Transformations of the Cortex of Cerebrum and Cerebellium in Human in Postnatal Ontogenesis, in Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka, (Brain Development and Formation of Cognitive Activity in Children), Farber, D.A. and Bezrukikh, M.M, Eds., Moscow: oskovskii Psikhologo-Sotsial’nyi Institut.

  41. Keller, S.S., Highley, J.R., Garcia-Finana, M., et al., Sulcal Variability, Stereological Measurements and Asymmetry of Broca’s Area on MR Images, J. Anatomy, 2007, vol. 211, no. 4, p. 534.

    Google Scholar 

  42. Bogolepova, I.N. and Malofeeva, L.I., Specific Features of Development of Speech Motor Fields 44 and 45 in the Left and Right Hemispheres of Human Brain in Early Postnatal Ontogenesis, Morfologiya, 2000, vol. 117, no. 2, p. 13.

    CAS  Google Scholar 

  43. Keller, S.S., Crow, T., Foundas, A., et al., Broca’s Area: Nomenclature, Anatomy, Typology and Asymmetry, Brain Lang., 2009, vol. 109, p. 29.

    PubMed  Google Scholar 

  44. Petrides, M., Broca-s Area in the Human and Nonhuman Primate Brain, in Broca’s Region, Grodzinsky, Y. and Amunts, K., Eds., New York: Oxford Univ. Press, 2006, p. 31.

    Google Scholar 

  45. Chernigovskaya, T.V., Mirror Brain, Concepts, and Language: Cost of Anthropogenesis, Fiziol. Zh. im. I.M. Sechenova, 2006, vol. 92, no. 1, p. 84.

    Google Scholar 

  46. Buccino, G., Vogt, S., Ritzl, A., et al., Neural Circuits Underlying Imitation Learning of Hand Action: An Event-Related FMRI Study, Neuron, 2004, vol. 42, no. 2, p. 323.

    PubMed  CAS  Google Scholar 

  47. Craighero, L., Metta, G., Sandini, G., and Fadiga, L., The Mirror-Neurons System: Data and Models, Progr. Brain Res., 2007, vol. 164, p. 39.

    Google Scholar 

  48. Thoenissen, D., Zilles, K., and Toni, I., Differential Involvement of Parietal and Precentral Regions in Movement Preparation and Motor Intention, J. Neurosci., 2002, vol. 22, no. 20, p. 9024.

    PubMed  CAS  Google Scholar 

  49. Nishitani, N., Scharmann, M., Amunts, K., and Hari, R., Broca’s Region: From Action to Language, Physiology, 2005, vol. 20, no. 1, p. 60.

    PubMed  Google Scholar 

  50. Fink, G.R., Manjaly, Z.M., Stephan, K.E., et al., A Role from Broca’s Area Beyond Language Processing: Evidence from Neuropsychology and fMRI, in Broca’s Region, Grodzinsky, Y. and Amunts, K., Eds., New York: Oxford University Press, 2006, p. 254.

    Google Scholar 

  51. Sowell, E.R., Thompson, P.M., Leonard, C.M., et al., Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children, J. Neurosci., 2004, vol. 24, no. 38, p. 8223.

    PubMed  CAS  Google Scholar 

  52. Lu, L., Leonard, C., Thompson, P.M., et al., Normal Developmental Changes in Inferior Frontal Gray Matter Are Associated with Improvement in Phonological Processing: Longitudinal MRI Analysis, Cereb. Cortex, 2007, vol. 17, no. 5, p. 1092.

    PubMed  Google Scholar 

  53. Marsh, R., Gerber, A.J., and Peterson, B.S., Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders, J. Am. Acad. Child Adolesc. Psyciatry, 2008, vol. 47, no. 11, p. 1233.

    Google Scholar 

  54. Yakovlev, P.L. and Lecours, A.R., The Myelogenetic Cycles of Regional Maturation of the Brain, in Regional Development of the Brain in Early Life, Minkowski, A., Ed., Oxford: Blackwell Scientific, 1967, p. 3.

    Google Scholar 

  55. Falr, D.A., Cohen, A.L., Dosenbach, W.U., et al., The Maturing Architecture of the Brains Default Network, Proc. Nat. Acad. Sci. U.S.A., 2008, vol. 105, no. 10, p. 4028.

    Google Scholar 

  56. Catani, M., Allin, M.P., Husain, M., et al., Symmetries in Human Brain Language Pathways Correlate with Verbal Recall, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 43, p. 17163.

    PubMed  CAS  Google Scholar 

  57. Tsaparina, D.M., Tsitseroshin, M.N., and Shepoval’nikov, A.N., Age-Related Characteristics of the Formation of Neurophysiological Mechanisms of the Phonetic, Grammatical, and Semantic Linguistic Levels, Hum. Physiol., 2008, vol. 34, no. 5, p. 546.

    Google Scholar 

  58. Meltzoff, A.N., Kuhl, P.K., Movellan, J., and Sejnowski, T.J., Foundations for a New Science of Learning, Science, 2009, vol. 325, no. 5938, p. 284.

    PubMed  CAS  Google Scholar 

  59. Kuhl, P.K., Brain Mechanisms in Early Language Acquisition, Neuron, 2010, vol. 67, no. 5, p. 713.

    PubMed  CAS  Google Scholar 

  60. Doidge, N., The Brain That Changes Itself, 2008.

  61. Knapska, E. and Kaczmarek, L., A Gene for Neuronal Plasticity in the Mammalian Brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK?, Prog. Neurobiol., 2004, vol. 74, no. 4, p. 183.

    PubMed  CAS  Google Scholar 

  62. Solov’eva, N.A., Lagutina, L.V., Antonova, L.V., and Anokhin, K.V., Regulation of Expression of Gene c-Fos in Olfactory Bulbs of Rats During Olfactory Training, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2006, vol. 56, no. 5, p. 674.

    Google Scholar 

  63. Lenneberg, E.H., Biological Foundations of Language, New York: Wiley, 1967.

    Google Scholar 

  64. Stoel-Gammon, C., Prelinguistic Vocal Development: Measurement and Predictions, in Phonological Development: Models, Research Implications, Ferguson, C.A., Menn, L., and Stoel-Gammon, C., Eds., New York, 1992, p. 439.

  65. Salakhova, A.D., Razvitie zvukovoi storony rechi rebenka (Development of Acoustic Aspect in the Child Speech), Moscow, 1973.

  66. Berk, L., Child Development, 6th ed., Boston, MA: Allyn and Bacon, 2003.

    Google Scholar 

  67. Boysson-Bardies, B. and de Vihman, M., Adaptation to Language: Evidence from Babbling and First Words in Four Languages, Language, 1991, vol. 67, no. 2, p. 297.

    Google Scholar 

  68. Levitt, A.G., Uttman, J.G., and Avdelott, J., From Babbling Towards the Sound Systems of English and French: A Longitudinal Two-Case Study, J. Child Lang., 1992, vol. 19, no. 1, p. 19.

    PubMed  CAS  Google Scholar 

  69. Vihman, M.M., Phonological Development: The Origins of Language in the Child, Cambridge: Blackwell, 1996.

    Google Scholar 

  70. Andreeva, N.G. and Kulikov, G.A., Biological Foundations of Speech Development. 1. Sound Production, Sens. Sist., 2006, vol. 20, no. 3, p. 163.

    Google Scholar 

  71. Polka, L. and Werker, J.F., Developmental Changes in Perception of Nonnative Vowel Contrasts, J. Exp. Psychol. Hum. Percept. Perform., 1994, vol. 20, no. 2, p. 421.

    PubMed  CAS  Google Scholar 

  72. Kuhl, P.K., Stevens, E., Hayashi, A., et al., Infants Show a Facilitation Effect for Native Language Phonetic Perception between 6 and 12 Months, Dev. Sci., 2006, vol. 9, no. 2, p. F13.

    PubMed  Google Scholar 

  73. Rivera-Gaxiola, M., Silva-Pereyra, J.F., and Kuhl, P.K., Brain Potentials to Native and NonNative Speech Contrasts in 7- and 11-Month-Old American Infants, Dev. Sci., 2005, vol. 8, no. 2, p. 162.

    PubMed  Google Scholar 

  74. Garcia-Sierra, A., Ramirez-Esparza, N., and Kuhl, P.K., Speech Perception Development in Monolingual and Bilingual Infants, J. Acoust. Soc. Am., 2012, vol. 131, no. 4, p. 3234.

    Google Scholar 

  75. Kovelman, I., Baker, S.A., and Petitto, L.-A., Age of First Bilingual Language Exposure As a New Window Into Bilingual Reading Development, Biling, 2008, vol. 11, no. 2, p. 203.

    Google Scholar 

  76. Au, T.K., Knightly, L.M., Jun, S.-A., and Oh, J.S., Overhearing a Language During Childhood, Psychol. Sci., 2002, vol. 13, no. 3, p. 238.

    PubMed  Google Scholar 

  77. Bloch, C., Kaiser, A., Kuenzli, E., et al., The Age of Second Language Acquisition Determines the Variability in Activation Elicited by Narration in Three Languages in Broca’s and Wernicke’s Area, Neuropsychologia, 2009, vol. 47, p. 625.

    PubMed  Google Scholar 

  78. Kuo, L.-J. and Anderson, R.C., Effects of Early Bilingualism on Learning Phonological Regularities in a New Language, J. Experim. Child Psychol., 2012, vol. 111, p. 455.

    Google Scholar 

  79. MacWhinney B. and Bates, E., The Crosslinguistic Study of Sentence Processing, New York: Cambridge Univ. Press, 1989.

    Google Scholar 

  80. Halsband, U., Bilingual and Multilingual Language Processing, J. Physiol. Paris, 2006, vol. 99, nos. 4–6, p. 355.

    PubMed  Google Scholar 

  81. Bekhtereva, N.P., Magiya mozga i labirinty zhizni (Brain Magic and Life Labyrinths), St. Petersburg: Notabene, 1999.

    Google Scholar 

  82. Bialystok, E., Cognitive Complexity and Attentional Control in the Bilingual Mind, Child Dev., 1999, vol. 70, p. 636.

    Google Scholar 

  83. Artemenko, G., Po, dve bolezni na kazhdogo rebenka (Two Diseases for Each Child), Argumenty Nedeli, 2012, no. 12 (304), p. 15.

  84. Fabbro, F., The Bilingual Brain: Cerebral Representation of Languages, Brain Lang., 2001, vol. 79, no. 2, p. 211.

    PubMed  CAS  Google Scholar 

  85. Neville, H., Mills, D., and Lawson, D., Fractionating Language: Different Neural Subsystems with Different Sensitive Periods, Cereb. Cortex, 1992, vol. 2, no. 3, p. 244.

    PubMed  CAS  Google Scholar 

  86. Neville, H.J., Coffey, S.A., Lawson, D.S., et al., Neural Systems Mediating American Sign Language: Effects of Sensory Experience and Age of Acquisition, Brain Lang., 1997, vol. 57, no. 3, p. 285.

    PubMed  CAS  Google Scholar 

  87. Slobin, D. and Green, J., Psycholinguistics, Moscow: Progress, 1976.

    Google Scholar 

  88. Dehaene, S., Dupoux, E., Mehler, J., et al., Anatomical Variability in the Cortical Representation of First and Second Language, NeuroReport, 1997, vol. 8, p. 3809.

    PubMed  CAS  Google Scholar 

  89. Kim, K.H.S., Relkin, N.R., Lee, K.-M., and Hirsch, J., Distinct Cortical Areas Associated with Native and Second Languages, Nature, 1997, vol. 388, p. 171.

    PubMed  CAS  Google Scholar 

  90. Chee, M.W., Hon, N., Lee, H.L., and Soon, C.S., Relative Language Proficiency Modulates BOLD Signal Change When Bilinguals Perform Semantic Judgments. Blood Oxygen Level Dependent, Neuroimage, 2001, vol. 6, no. 1, p. 1155.

    Google Scholar 

  91. Briellmann, R.S., Saling, M.M., Connell, A., et al., A High-Field Functional MRI Study of Quadrilingual Subjects, Brian Lang., 2004, vol. 9, p. 531.

    Google Scholar 

  92. De Bleser, R., Dupont, P., Postler, J., et al., The Organization of the Bilingual Lexicon: A PET Study, J. Neurolinguist, 2003, vol. 16, p. 439.

    Google Scholar 

  93. Ding, G., Perry, C., Peng, D., et al., Neural Mechanisms Underlying Semantic and Orthographic Processing in Chinese-English Bilinguals, NeuroReport, 2003, vol. 14, p. 1557.

    PubMed  Google Scholar 

  94. Meschyan, G. and Hernandez, A.E., Impact of Language Proficiency and Orthographic Transparency on Bilingual Word Reading: An FMRI Investigation, Neuroimage, 2006, vol. 29, no. 4, p. 1135.

    PubMed  Google Scholar 

  95. Perani, D., Paulesu, E., Galles, N.S., et al., The Bilingual Brain. Proficiency and Age of Acquisition of the Second Language, Brain, 1998, vol. 121, no. 10, p. 1841.

    PubMed  Google Scholar 

  96. Wartenburger, I., Heekeren, H.R., Abutalebi, J., et al., Early Setting of Grammatical Processing in the Bilingual Brain, Neuron, 2003, vol. 37, p. 159.

    PubMed  CAS  Google Scholar 

  97. Odlin, T., Language Transfer: Cross-Linguistic Influence in Language Learning, New York: Cambridge University Press, 1989.

    Google Scholar 

  98. Juffs, A., Main Verb Versus Reduced Relative Clause Ambiguity Resolution in L2 Sentence Processing, Lang. Learn., 1998, vol. 48, p. 107.

    Google Scholar 

  99. Ramat, A., Typology and Second Language Acquisition, Berlin: Mouton de Gruyter, 2003.

    Google Scholar 

  100. Yokoyama, S., Okamoto, H., Miyamoto, T., et al., Cortical Activation in the Processing of Passive Sentences in L1 and L2: An FMRI Study, Neuroimage, 2006, vol. 30, no. 2, p. 570.

    PubMed  Google Scholar 

  101. Jeong, H., Sugiura, M., Sassa, Y., et al., Effect of Syntactic Similarity on Cortical Activation during Second Language Processing: A Comparison of English and Japanese Among Native Korean Trilinguals, Hum. Brain. Mapp., 2007, vol. 28, no. 3, p. 194.

    PubMed  Google Scholar 

  102. Suh, S., Yoon, H.W., Lee, S., et al., Effects of Syntactic Complexity in L1 and L2; An FMRI Study of Korean-English Bilinguals, Brain Res., 2007, vol. 1136, no. 1, p. 178.

    PubMed  CAS  Google Scholar 

  103. Genesee, F., Early Bilingual Development: One Language Or Two?, J. Child Language, 1989, vol. 16, p. 161.

    CAS  Google Scholar 

  104. Pearson, B.Z., Fernandez, S.C., and Oller, D.K., Lexical Development in Bilingual Infants and Toddlers: Comparison to Monolingual Norms. Language Learning, J. Appl. Linguistics, 1993, vol. 43, p. 93.

    Google Scholar 

  105. De Houwer, A., Language Acquisition in Children Raised with Two Languages from Birth: An Update, Revue Parole, 1999, vol. 9, p. 63.

    Google Scholar 

  106. Petitto, L.A., Katerelos, M., Levy, B.G., et al., Bilingual Signed and Spoken Language Acquisition from Birth: Implications for the Mechanisms Underlying Early Bilingual Language Acquisition, J. Child Language, 2001, vol. 28, p. 453.

    CAS  Google Scholar 

  107. Holowka, S. and Petitto, L.A., Semantic and Conceptual Knowledge Underlying Bilingual Babies’ First Signs and Words, Language Learning, 2002, vol. 52, p. 205.

    Google Scholar 

  108. Petitto, L.A. and Kovelman, I., The Bilingual Paradox: How Signing-Speaking Bilingual Children Help Us To Resolve It and Teach Us About the Brain’s Mechanisms Underlying All Language Acquisition, Learning Languages, 2003, vol. 8, no. (3), p. 5.

    Google Scholar 

  109. Volterra, V. and Taeschner, T., The Acquisition and Development of Language by Bilingual Children, J. Child Language, 1978, vol. 5, p. 311.

    Google Scholar 

  110. Vihman, M.M., Language Differentiation by the Bilingual Infant, J. Child Language, 1985, vol. 12, p. 297.

    CAS  Google Scholar 

  111. Cross-Linguistic Structures in Simultaneous Bilingualism, Doepke, S., Ed., Amsterdam, Netherlands: John Benjamins Publishing Company, 2000.

    Google Scholar 

  112. Nicoladis, E., The Cues That Children Use in Acquiring Adjectival Phrases and Compounds Nouns: Evidence from Bilingual Children, Brain Lang., 2002, vol. 81, p. 635.

    PubMed  Google Scholar 

  113. Paradis, J. and Navarro, S., Subject Realization and Crosslinguistic Interference in the Bilingual Acquisition of Spanish and English: What Is the Role of the Input?, J. Child Language, 2003, vol. 30, p. 371.

    Google Scholar 

  114. Kohnert, K.J., Bates, E., and Hernandez, A.E., Balancing Bilinguals: Lexical-Semantic Production and Cognitive Processing in Children Learning Spanish and English, J. Speech, Language, & Hearing Res., 1999, vol. 42, p. 1400.

    CAS  Google Scholar 

  115. Fennell, C., Byers-Heinlein, K., and Werker, J.A., Comprehensive Analysis of Bilingual Infants’ Use of Phonetic Detail in Words, Presented at Language Acquisition and Bilingualism Conference, Toronto, Canada. May 2006.

  116. Mueller, N. and Hulk, A., Crosslinguistic Influence in Bilingual Language Acquisition: Italian and French As Recipient Languages, Bilingualism: Language & Cognition, 2001, vol. 4, p. 1.

    Google Scholar 

  117. Chee, M.W., Caplan, D., Soon, C.S., et al., Processing of Visually Presented Sentences in Mandarin and English Studied with FMRI, Neuron, 1999, vol. 23, p. 127.

    PubMed  CAS  Google Scholar 

  118. van Heuven, W.J. and Dijkstra, T., Language Comprehension in the Bilingual Brain: FMRI and ERP Support for Psycholinguistic Models, Brain. Res. Rev., 2010, vol. 64, no. 1, p. 104.

    PubMed  Google Scholar 

  119. Kovacs, A.M., Beyond Language: Childhood Bilingualism Enhances High-Level Cognitive Functions, in Cognitive Aspects of Bilingualism, Kecskes, I. and Albertazzi, L., Eds., Springer, 2007, p. 301.

  120. Hakuta, K. and Garcia, E., Bilingualism and Education, Am. Psychol., 1989, vol. 44, no. 2, p. 374.

    Google Scholar 

  121. Bochner, S., The Learning Strategies of Bilingual Versus Monolingual Students, Brit. J. Educational Psychol., 1996, vol. 66, p. 83.

    Google Scholar 

  122. Bialystok, E. and Martin, M.M., Attention and Inhibition in Bilingual Children: Evidence from Dimensional Change Card Sort Task, Develop. Sci., 2004, vol. 7, p. 325.

    Google Scholar 

  123. Bialystok, E., Craik, F.I., Klein, R., and Viswanathan, M., Bilingualism, Aging, and Cognitive Control: Evidence from the Simon Task, Psychol. Aging, 2004, vol. 19, p. 290.

    PubMed  Google Scholar 

  124. Rodriguez-Fornells, A., Rotte, M., Heinze, H.J., et al., Brain Potential and Functional MRI Evidence for How To Handle Two Languages with One Brain, Nature, 2002, vol. 28, no. 415(6875), p. 1026.

    Google Scholar 

  125. Arbib, M.A. and Mundhenk, T.N., Schizophrenia and the Mirror System: An Essay, Neuropsychologia, 2005, vol. 43, p. 268.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.V. Kruchinina, E.I. Galperina, E.E. Kats, A.N. Shepoval’nikov, 2012, published in Fiziologiya Cheloveka, 2012, Vol. 38, No. 6, pp. 15–31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruchinina, O.V., Galperina, E.I., Kats, E.E. et al. Factors affecting the variability of the central mechanisms for maintaining bilingualism. Hum Physiol 38, 571–585 (2012). https://doi.org/10.1134/S0362119712060084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119712060084

Keywords

Navigation