Human Physiology

, Volume 38, Issue 1, pp 14–24 | Cite as

Features of the organization of the cerebral cortex bioelectric potentials and visceral state in neurotic depression

  • A. A. Ivonin
  • D. O. Kutsenko
  • N. N. Bogdanov
  • V. T. Shuvaev
  • A. D. Nozdrachev


Studies were conducted with the participation of 20 patients with different classical variants of neurotic depression. The spatial organization of the bioelectrical activity of the brain was studied with the method of cross-correlation and coherent analysis. The autonomic-visceral state was assessed by the results of the auricular cryoreflex test (measurement of the cold sensibility of auricular points). The clinical picture of neurotic depression was shown to be reflected in the structure of the EEG spatial organization, which is modified depending on the degree of neurotic depression and the concomitant anxiety and asthenic syndromes. In the group with depressive syndrome without concomitant asthenic or anxiety manifestations, most changes were revealed in the right frontotemporal-left posterotemporal region. A cross-correlation and coherence decrease in the frontotemporal regions of both hemispheres and markedly increased cross-correlations in the right posterotemporal region were revealed in the depression + associated anxiety group. In the group where the depressive and anxiety syndromes were associated with marked asthenic manifestations, decreased cross-correlation and coherent relations in the frontotemporal regions of both hemispheres were observed. The clinical picture of neurotic disorders is reflected in a specific pattern of variations in the spatial organization of electrical activity of the cerebral cortex and in variations in the autonomic visceral state parameters. The development of negative emotional states in humans is accompanied by changes in the visceral functions. Variations in the central brain structures involve the zones of representation of emotional reactions and the zones of cortical representation of the organs. Insignificant central variations may cause autonomic dysfunction.


EEG neuroses depression autonomic visceral disorders 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chernigovskii, V.N., Intertseptsiya (Interception), Leningrad: Nauka, 1985.Google Scholar
  2. 2.
    Vasserman, L.I., Il’ina, O.G., Mazo, G.E., and Ivanov, M.V., Neuropsychological Correlates of Depressive States in the Process of Psychopharmacotherapy, Klinicheskie Pavlovskie chteniya. Vypusk tretii “Depressiya” (Clinical Pavlov Readings, Issue 3: Depression), St. Petersburg, 2001.Google Scholar
  3. 3.
    Nozdrachev, A.D., Baksenov, Yu.I., Barannikova, A.I., et al., Nachala fiziologii (The Principles of Physiology), St. Petersburg: Lan’, 2005.Google Scholar
  4. 4.
    Aziz, O., Schnitzler, A., and Enck, P., Functional Neuroimaging of Visceral Sensation, J. Clin. Neurophysiol., 2000, vol. 6, p. 604.Google Scholar
  5. 5.
    Hobson, A.R. and Aziz, O., Central Nervous System Processing of Human Visceral Pain in Health and Disease, News Physiol. Sci., 2003, vol. 18, p. 109.PubMedGoogle Scholar
  6. 6.
    Beck, A.T., Ward, C.H., Mendelson, M., et al., An Inventory for Measuring Depression, Arch. Gen. Psychiatry, 1961, vol. 4, p. 561.PubMedCrossRefGoogle Scholar
  7. 7.
    Bizyuk, A.P., Vasserman, L.I., and Iovlev, B.I., Primenenie integrativnogo testa trevozhnosti (ITT). Metodicheskie rekomendatsii (Application of the Integrative Anxiety Test (IAT). Recommendations on Methods), St. Petersburg, 1997.Google Scholar
  8. 8.
    Bogdanov, N.N. and Makarov, A.K., Komp’yuternaya otsenka vegetativnogo statea metodom aurikulyarnogo kriorefleksotesta (Computer-Aided Assessment of the Autonomic State with the Auricular Cryoreflex Test), Moscow: St. Petersburg MAPO, 2003.Google Scholar
  9. 9.
    Strelets, V.B., Ivanitskii, A.M., and Ivanitskii, G.A., Disorganization of Cortical Processes in Depression, Zh. Vyssh. Nerv. Deyatel., 1996, vol. 46, no. 2, p. 274.Google Scholar
  10. 10.
    Cook, I.A., Hunter, A.M., Abrams, M., et al., Midline and Right Frontal Brain Function as a Physiologic Biomarker of Remission in Major Depression, Psychiatry Res., 2009, vol. 174(2), p. 152.PubMedCrossRefGoogle Scholar
  11. 11.
    Davidson, R.J. and Sutton, S.K., Affective Neuroscience: The Emergence of a Discipline, Current Opin. Neurobiol., 1995, no. 5, p. 217.Google Scholar
  12. 12.
    Deslands, A.C., de Moraes, H., Pompeu, F.A., et al., Electroencephalographic Frontal Asymmetry and Depressive Symptoms in Elderly, J. Biol. Psychol., 2008, vol. 79(3), p. 317.CrossRefGoogle Scholar
  13. 13.
    Matousek, M., EEG Patterns in Various Subgroups of Endogenous Depression, Int. J. Psychophysiol., 1991, vol. 10(3), p. 239.PubMedCrossRefGoogle Scholar
  14. 14.
    Iznak, A.F., Electrophysiological Correlates of Psychogenic Disorders, Fiziol. Chel., 2007, vol. 33, no. 2, p. 137.Google Scholar
  15. 15.
    Mathersul, D., Williams, L.M., Hopkinson, P.J., and Kemp, A.H., Investigating Models of Affect: Relationships among EEG Alpha Asymmetry, Depression, and Anxiety, Emotion, 2008, vol. 8(4), p. 560.PubMedCrossRefGoogle Scholar
  16. 16.
    Hunter, A.M., Leuchter, A.F., Cook, I.A., and Abrams, M., Brain Functional Changes (Q EEG Cordance) and Worsening Suicidal Ideation and Mood Symptoms during Antidepressant Treatment, Acta Psychiatr. Scand., 2010, vol. 122(6), p. 461.PubMedCrossRefGoogle Scholar
  17. 17.
    Iosifesku, D.V., Grenwald, S., Devlin, P., et al., Frontal EEG Predictions of Treatment Outcome in Major Depressive Disorder, Eur. Neuropsychopharmacol., 2009, vol. 19(11), p. 772.CrossRefGoogle Scholar
  18. 18.
    Sviderskaya, N.E., Prudnikov, V.N., and Antonov, A.G., Features of the EEG Signs of Anxiety in Humans, Zh. Vyssh. Nerv. Deyatel., 2001, vol. 51, no. 2, p. 158.Google Scholar
  19. 19.
    Strelets, V.B. and Golikova, Zh.V., Psychophysiological Mechanisms of Stress in Individuals with a Different Markedness of Activation, Zh. Vyssh. Nerv. Deyatel., 2001, vol. 51, no. 2, p. 166.Google Scholar
  20. 20.
    Aftanas, L.I., Varlamov, A.A., Pavlov, S.V., et al., Reflection of the Emotion Sign in the Effects of Evoked EEG Synchronization and Desynchronization, Ross. Fiziol. Zh. im. I.M. Sechenova, 2002, vol. 88, no. 6, p. 790.PubMedGoogle Scholar
  21. 21.
    Heller, W., Neurophysiological Mechanisms of Individual Differences in Emotion, Personality, and Arousal, Neuropsychiatry, 1993, vol. 7, no. 4, p. 476.Google Scholar
  22. 22.
    Ukraintseva, Yu.V. and Rusalova, M.N., Level of Personality Anxiety and Independence in Individuals with Different Spatial-Temporal Organization of Brain Bioelectric potentials, Zh. Vyssh. Nerv. Deyatel., 2004, vol. 54, no. 3, p. 331.Google Scholar
  23. 23.
    Ivonin, A.A., Tsitseroshin, M.N., Kutsenko, D.O., et al., Characteristics of Disturbances of Intercortical and Cortical-Subcortical Integration in Various Clinical Forms of Neurotic Depression, Hum. Physiol., 2008, vol. 34, no. 6, p. 660.CrossRefGoogle Scholar
  24. 24.
    Herrigton, J.D., Heller, W., Mohanty, A., et al., Localization of Asymmetric Brain Function in Emotion and Depression, Psychophysiology, 2010, vol. 47, p. 442.CrossRefGoogle Scholar
  25. 25.
    Verberne, A.J.M. and Owens, N.C., Cortical Modulation of the Cardiovascular System, Progress Neurobiol., 1998, vol. 54, p. 149.CrossRefGoogle Scholar
  26. 26.
    Schaepler, T.E., Frick, C., Zobel, A., et al., Vagus Nerve Stimulation for Depression: Efficacy and Safety in a European Study, Psychol. Med., 2008, vol. 38, p. 651.Google Scholar
  27. 27.
    Schaepler, T.E. and Kosel, M., Novel Physical Treatment for Major Depression: Vagus Nerve Stimulation, Transcranial Magnetic Stimulation and Magnetic Seizure Therapy, Current Opin. Psychiatry, 2004, vol. 17, p. 15.CrossRefGoogle Scholar
  28. 28.
    Bernstein, C.N., Frankenstein, U.N., Rawstorne, P., et al., Cortical Mapping of Visceral Pain in Patient with GI Disorders Using Functional Magnetic Resonance Imaging, Am. J. Gastroenterol., 2002, vol. 97, no. 2, p. 319.PubMedCrossRefGoogle Scholar
  29. 29.
    Eickhoff, S.B., Lotze, M., Wietek, B., et al., Segregation of Visceral and Somatosensory Afferents: An FMRI and Cytoarchitechtonic Mapping Study, Neuroimage, 2006, vol. 31(3), p. 1004.PubMedCrossRefGoogle Scholar
  30. 30.
    Durinyan, R.A., Fiziologicheskie osnovy aurikulyarnoi refleksoterapii (Physiological Basis of Auricular Reflex Therapy), Yerevan, 1983.Google Scholar
  31. 31.
    Ladabaum, U., Minoshima, S., and Owyang, C., Pathobiology of Visceral Pain: Molecular Mechanisms and Therapeutic Implications. V. Central Nervous System Processing of Somatic and Visceral Sensory Signals, Am. J. Physiol. Gastrointest. Liver Physiol., 2000, G1–6, p. 279.Google Scholar
  32. 32.
    Dunckley, D., Aziz, O., Wise, R.G., et al., Attentional Modulation of Visceral and Somatic Pain, Neurogastroenterol. Motil., 2007, vol. 19, p. 569.PubMedCrossRefGoogle Scholar
  33. 33.
    Strelets, V.B., Disorder of the Physiological Mechanisms of Emotion and Thought Perception in Certain Forms of Mental Pathology, Fiziol. Chel., 1989, vol. 15, no. 3, p. 135.Google Scholar
  34. 34.
    Harmoni, T., Fernandez, T., Reyes, A., et al., Delta Activity a Sign of Internal Concentration during the Performance of Mental Tasks, 7th Int. Congr. (I.O.P.). Abstracts, Thessaloniki, 1994, p. 49.Google Scholar
  35. 35.
    Bernson, G., Sarter, M., and Caciopp, T., Review Article. Ascending Visceral Regulation of Cortical Affective Information Processing, Eur. J. Neurosci., 2003, vol. 18, p. 2103.CrossRefGoogle Scholar
  36. 36.
    Bielefeldt, K., Christianson, J.A., and Davis, B.M., Basic and Clinical Aspects of Visceral Sensation: Transmission in the CNS, Neurogastroenterol. Motil., 2005, vol. 17, p. 488.PubMedCrossRefGoogle Scholar
  37. 37.
    Sidhu, H., Kern, M., and Shaker, R., Absence of Increasing Cortical fMRI Activity Volume in Response to Increasing Visceral Stimulation in IBS Patients, Am. J. Physiol. Gastrointest. Liver Physiol., 2004, vol. 287, G. 425.CrossRefGoogle Scholar
  38. 38.
    Sarkar, S., Hobson, A.R., Furlong, P.L., et al., Central Neural Mechanisms Mediating Human Visceral Hypersensitivity, Am. J. Physiol. Gastrointest. Liver Physiol., 2001, vol. 281, G. 1196.Google Scholar
  39. 39.
    Westerhaus, M.J. and Loewy, A.D., Central Representation of the Sympathetic Nervous System in the Cerebral Cortex, Brain Res., 2001, vol. 903, p. 117.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Ivonin
    • 1
  • D. O. Kutsenko
    • 1
  • N. N. Bogdanov
    • 2
  • V. T. Shuvaev
    • 1
  • A. D. Nozdrachev
    • 1
  1. 1.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Medical Academy of Postgraduate EducationSt. PetersburgRussia

Personalised recommendations