Skip to main content
Log in

Background cerebral electrical activity in healthy mental aging

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

EEG power mapping in the frequency bands from Δ to γ2 was used to study the changes in the background cerebral activity during “successful” cognitive aging, with the cognitive ability preserved, in subjects engaged in complex occupational activities. The sample consisted of an older age group (OAG) of 32 subjects (14 men and 18 women with a mean age of 65.1 ± 1.18 years) and a younger age group (YAG) of 33 subjects (18 men and 15 women with a mean age of 22.1 ± 0.38 years). The mean power of the slow (Δ, θ, and α2) rhythms decrease with age, and that of the fast (β and γ) rhythms increase with age. The heterogeneity of the power parameters recorded at different sites was decreased in the OAG compared to the YAG. The centro-lateral power gradient was smoothed in the frequency bands from Δ- to β2-, and both the centro-lateral and fronto-parietal power gradients and interhemispheric differences, in the α- and β1 bands in the OAG. The results suggest that the observed age-related changes are prerequisites for the involvement of compensatory mechanisms, which may be related to both mobilization of larger resources ensuring cognitive activity and reorganization of cortical networks in the areas prone to age-related physiological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verhaeghen, P. and Cerella, J., Everything We Know About Aging and Response Times: A Meta-Analytic Integration, in The Handbook of Cognitive Aging: Interdisciplinary Perspectives, Los Angeles: SAGE, 2008, p. 1.

    Google Scholar 

  2. Braver, T.S. and West, R., Working Memory, Executive Control, and Aging, in The Handbook of Aging and Cognition, New York: Psychology, 2008, p. 311.

    Google Scholar 

  3. Old, S.R. and Naveh-Benjamin, M., Differential Effects of Age on Item and Associative Measures of Memory: Ameta-Analysis, Psychol. Aging, 2008, vol. 23, no. 1, p. 104.

    Article  PubMed  Google Scholar 

  4. Ylikoski, R., Ylikoski, A., Keskivaara, P., et al., Heterogeneity of Cognitive Profiles in Aging: Successful Aging, Normal Aging, and Individuals at Risk for Cognitive Decline, Eur. J. Neurol., 1999, vol. 6, p. 645.

    Article  PubMed  CAS  Google Scholar 

  5. Finkel, D., Reynolds, C.A., McArdle, J.J., and Pedersen, N.L., The Longitudinal Relationship between Processing Speed and Cognitive Ability: Genetic and Environmental Influence, Behav. Genet., 2005, vol. 35, p. 535.

    Article  PubMed  Google Scholar 

  6. Kempermann, G., Gast, D., and Gage, F.H., Neuroplasticity in Old Age: Sustained Fivefold Induction of Hippocampal Neurogenesis by Long-Term Environmental Enrichment, Ann. Neurol., 2002, vol. 52, no. 2, p. 135.

    Article  PubMed  Google Scholar 

  7. Bennett, E.L., Diamond, M.C., Krech, D., and Rosenzweig, M.R., Chemical and Anatomical Plasticity of Brain, J. Neuropsychiatry Clin. Neurosci., 1996, vol. 8, no. 4, p. 459.

    PubMed  CAS  Google Scholar 

  8. Riege, W.H., Environmental Influences on Brain and Behavior of Year-Old Rats, Dev. Psychobiol., 1971, vol. 4, no. 2, p. 157.

    Article  PubMed  CAS  Google Scholar 

  9. Klimesch, W., Doppelmayr, M., and Hanslmayr, S., Upper Alpha ERD and Absolute Power: Their Meaning for Memory Performance, Prog. Brain Res., 2006, vol. 159, p. 151.

    Article  PubMed  Google Scholar 

  10. Volf, N.V. and Tarasova, I.V., The Relationships between EEG θ and β Oscillations and the Level of Creativity, Fiziol. Chel., 2010, vol. 36, no. 2, p. 15 [Human Physiol. (Engl. Transl.), vol. 36, no. 2, p. 132].

    CAS  Google Scholar 

  11. Razoumnikova, O.M., Reflection of the Intelligence Structure in the Spatiotemporal Features of the Baseline EEG, Fiziol. Chel., 2003, vol. 29, no. 5, p. 115 [Human Physiol. (Engl. Transl.), vol. 29, no. 5, p. 619].

    Google Scholar 

  12. Celesia, G.G., EEG and Event-Related Potentials in Aging and Dementia, J. Clin. Neurophysiol., 1986, vol. 3, p. 99.

    Article  PubMed  CAS  Google Scholar 

  13. Ehlers, C.L. and Kupfer, D.J., Effects of Age on Delta and REM Sleep Parameters, EEG Clin. Neurophysiol., 1989, vol. 72, p. 118.

    Article  CAS  Google Scholar 

  14. Klass, D.W. and Brenner, R.P., Electroencephalography of the Elderly, J. Clin. Neurophysiol., 1995, vol. 12, p. 116.

    Article  PubMed  CAS  Google Scholar 

  15. Obrist, W.D., The Electroencephalogram of Normal Aged Adults, EEG Clin. Neurophysiol., 1954, vol. 6, p. 235.

    Article  CAS  Google Scholar 

  16. Obrist, W.D., Sokoloff, L., Lassen, N.A., et al., Relation of EEG to Cerebral Blood Flow and Metabolism in Old Age, EEG Clin. Neurophysiol., 1963, vol. 15, p. 610.

    Article  CAS  Google Scholar 

  17. Woodruff, D.S. and Kramer, D.A., EEG Alpha Slowing, Refractory Period, and Reaction Time in Aging, Exp. Aging Res., 1979, vol. 5, p. 279.

    Article  PubMed  CAS  Google Scholar 

  18. Roubicek, I., The Electroencephalogram in the Middle-Aged and the Elderly, J. Am. Geriatr. Soc., 1977, vol. 25, p. 145.

    PubMed  CAS  Google Scholar 

  19. Zenkov, L.R. and Ronkin, M.A., Funktsional’naya diagnostika nervnykh boleznei (Functional Diagnosis of Neurological Diseases), Moscow: Meditsina, 1991.

    Google Scholar 

  20. Duffy, F.H., Albert, M.S., McAnulty, G., and Gamey, A.J., Age-Related Differences in Brain Electrical Activity of Healthy Subjects, Ann. Neurol., 1984, vol. 16, p. 430.

    Article  PubMed  CAS  Google Scholar 

  21. Breslau, J., Starr, A., Sicotte, N., et al., Topographic EEG Changes with Normal Aging and SDAT, EEG Clin. Neurophysiol., 1989, vol. 72, p. 281.

    Article  CAS  Google Scholar 

  22. Williamson, P.C., Merskey, H., Momson, S., et al., Quantitative Electroencephalographic Correlates of Cognitive Decline in Normal Elderly Subjects, Arch. Neurol., 1990, vol. 47, p. 1185.

    PubMed  CAS  Google Scholar 

  23. Babiloni, C., Binetti, G., Cassarino, A., et al., Sources of Cortical Rhythms in Adults during Physiological Aging: a Multicentric EEG Study, Hum. Brain Mapp., 2006, vol. 27, no. 2, p. 162.

    Article  PubMed  Google Scholar 

  24. Cummins, T.D. and Finnigan, S., Theta Power Is Reduced in Healthy Cognitive Aging, Int. J. Psychophysiol., 2007, vol. 66, no. 1, p. 10.

    Article  PubMed  Google Scholar 

  25. Goh, J. and Park, D.C., Neuroplasticity and Cognitive Aging: The Scaffolding Theory of Aging and Cognition, Restor. Neurol. Neurosci., 2009, vol. 27, no. 5, p. 391.

    PubMed  Google Scholar 

  26. Saito, N., Analytic Study on EEG Features of Aging with/without Psychiatric Disorders: Focussing at the Alterations in the EEGs of the Healthy, Depressive and Demented Elderlies, Seish Seish. Shinkeigaku Z., 1995, vol. 97, no. 10, p. 801.

    CAS  Google Scholar 

  27. Volf, N.V., Polovye razlichiya funktsional’noi organizatsii protsessov polusharnoi obrabotki rechevoi informatsii (Sex-Related Differences in the Functional Organization of Hemispheric Processing of Speech Information), Rostov-on-Don: TsVVR, 2000.

    Google Scholar 

  28. Förstl, H., Besthorn, C., Sattel, H., et al., Volumetric Brain Changes and Quantitative EEG in Normal Aging and Alzheimer’s Dementia, Nervenarzt, 1996, vol. 67, no. 1, p. 53.

    PubMed  Google Scholar 

  29. Hartikainen, P., Soininen, H., Partanen, J., et al., Aging and Spectral Analysis of EEG in Normal Subjects: a Link to Memory and CSF AChE, Acta Neurol. Scand., 1992, vol. 86, no. 2, p. 148.

    Article  PubMed  CAS  Google Scholar 

  30. Basar, E., Basar, E.C., Karakas, S.M., and Scurmann, M., Brain Oscillation in Perception and Memory, Int. J. Psyhophysiol., 2000, vol. 35, nos. 2–3, p. 95.

    Article  CAS  Google Scholar 

  31. Klimesch, W., EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: a Review and Analysis, Brain Res. Brain Res. Rev., 1999, vol. 29, nos. 2–3, p. 169.

    Article  PubMed  CAS  Google Scholar 

  32. Baar, E., Başar-Eroglu, C., Karakaş, S., and Schürmann, M., Gamma, Alpha, Delta, and Theta Oscillations Govern Cognitive Processes, Int. J. Psychophysiol., 2001, vol. 39, nos. 2-3, p. 241.

    Google Scholar 

  33. Aftanas, L.I., Varlamov, A.A., Reva, N.V., and Pavlov, S.V., Effect of Alexithymia on the Event-Related Theta-Synchronization of Human EEG during Reception of Emotional Visual Stimuli, Ross Fiziol. Zh. im. I.M. Sechenova, 2003, vol. 89, no. 8, p. 926.

    PubMed  CAS  Google Scholar 

  34. Bresnahan, S.M., Anderson, J.W., and Barry, R.J., Age-Related Changes in Quantitative EEG in Attention-Deficit/Hyperactivity Disorder, Biol. Psychiatry, 1999, vol. 46, no. 12, p. 1690.

    Article  PubMed  CAS  Google Scholar 

  35. Fernandez, A., Arrazola, J., Maestu, F., et al., Correlations of Hippocampal Atrophy and Focal Low-Frequency Magnetic Activity in Alzheimer Disease: Volumetric MR Imaging: Magnetoencephalographic Study, AJNR Am. J. Neuroradiol., 2003, vol. 24, p. 481.

    PubMed  Google Scholar 

  36. Volf, N.V., Tarasova, I., and Razumnikova, O.M., Motivation in Creative Task: Impact on Individual Differences in Task-Related Alpha Oscillations, in Advances in Biomedical Research: Proceedings of the International Conference on Medical Physiology, University of Cambridge, 2010, p. 215.

  37. Man’kovskii, N.B., Mints, A.Ya., Kuznetsova, S.M., and Belonog, R.P., Dolgozhiteli. Neirofiziologicheskie aspekty (Long-Livers: A Neurophysiological Perspective), Leningrad: Nauka, 1985.

    Google Scholar 

  38. Miyasaka, M., Nakano, T., Ohmori, K., et al., The Mental Deterioration in the Aged and the Computerized EEG Analysis, Folia Psychiatr. Neurol. Jap., 1978, vol. 32, p. 95.

    CAS  Google Scholar 

  39. Marciani, M.G., Maschio, M., Spanedda, F., et al., Quantitative EEG Evaluation in Normal Elderly Subjects during Mental Processes: Age-Related Changes, J. Neurosci., 1994, vol. 76, p. 131.

    CAS  Google Scholar 

  40. Holschneider, D.P. and Leuchter, A.F., Beta Activity in Aging and Dementia, Brain Topogr., 1995, vol. 8, no. 2, p. 169.

    Article  PubMed  CAS  Google Scholar 

  41. Thompson, L.W. and Wilson, S., Electrocortical Reactivity and Learning in the Elderly, J. Gerontol., 1966, vol. 21, p. 45.

    PubMed  CAS  Google Scholar 

  42. Liddell, B.J., Paul, R.H., Arns, M., et al., Rates of Decline Distinguish Alzheimer’s Disease and Mild Cognitive Impairment Relative to Normal Aging: Integrating Cognition and Brain Function, J. Integr. Neurosci., 2007, vol. 6, no. 1, p. 141.

    Article  PubMed  Google Scholar 

  43. Nikolaev, A.R., Anokhin, A.P., Ivanitskii, G.A., et al., Spectral Rearrangement of EEG and the Organization of Cortical Connections during Image and Verbal Thinking, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1996, vol. 46, p. 831.

    CAS  Google Scholar 

  44. Pulvermuller, F., Birbaumer, N., Lutzenberger, W., and Mohr, B., High-Frequency Brain Activity: Its Possible Role in Attention, Perception and Language Processing, Prog. Neurobiol., 1997, vol. 52, p. 427.

    Article  PubMed  CAS  Google Scholar 

  45. Tallon-Baudry, C., The Roles of Gamma-Band Oscillatory Synchrony in Human Visual Cognition, Front Biosci., 2009, vol. 14, p. 321.

    Article  PubMed  Google Scholar 

  46. Hanslmayr, S., Aslan, A., Staudigl, T., et al., Prestimulus Oscillations Predict Visual Perception Performance between and within Subjects, NeuroImage, 2007, vol. 37, p. 1465.

    Article  PubMed  Google Scholar 

  47. Cacace, A.T. and McFarland, D.J., Spectral Dynamics of Electroencephalographic Activity during Auditory Information Processing, Hear Res., 2003, vol. 176, nos. 1–2, p. 25.

    Article  PubMed  Google Scholar 

  48. Dustman, R.E., Emmerson, R.Y., and Shearer, D.E., Life Span Changes in Electrophysiological Measures of Inhibition, Brain Cogn., 1996, vol. 30, no. 1, p. 109.

    Article  PubMed  CAS  Google Scholar 

  49. Bragina, N.N. and Dobrokhotova, T.A., Funktsional’nye asimmetrii cheloveka (Human Functional Asymmetries), Moscow: Meditsina, 1988.

    Google Scholar 

  50. Fokin, V.F. and Ponomareva, N.V., Dynamic Characteristics of Functional Interhemispheric Asymmetry, in Funktsional’naya mezhpolusharnaya asimmetriya (Functional Interhemispheric Asymmetry), Moscow: Nauchnyi Mir, 2004, p. 349.

    Google Scholar 

  51. Dolcos, F., Rice, H.J., and Cabeza, R., Hemispheric Asymmetry and Aging: Right Hemisphere Decline or Asymmetry Reduction, Neurosci. Biobehav. Rev., 2002, vol. 26, no. 7, p. 819.

    Article  PubMed  Google Scholar 

  52. Cabeza, R., Cognitive Neuroscience of Aging: Contributions of Functional Neuroimaging, Scand. J. Psychol., 2001, vol. 42, no. 3, p. 277.

    Article  PubMed  CAS  Google Scholar 

  53. Cabeza, R., Anderson, N.D., Locantore, J.K., et al., Aging Gracefully: Compensatory Brain Activity in High-Performing Older Adults, NeuroImage, 2002, vol. 17, no. 3, p. 1394.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.V. Volf, A.A. Gluhih, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 5, pp. 51–60.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volf, N.V., Gluhih, A.A. Background cerebral electrical activity in healthy mental aging. Hum Physiol 37, 559–567 (2011). https://doi.org/10.1134/S0362119711040207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711040207

Keywords

Navigation