Skip to main content
Log in

Sex specificity of the spatiotemporal organization of brain bioelectric potentials in adults and five- to six-year-old children in a state of quiet wakefulness

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Correlation and coherence analyses of EEG recordings from 26 children aged five to seven years (12 boys and 14 girls) as compared to 33 adult subjects (18 women and 15 men) has been carried out to study the topical features of the spatial structure of EEG distant interactions. A higher level of EEG intrahemispheric interactions in the posttemporal and frontal areas of the left hemisphere has been found in men as compared to women in whom the prevalence of interhemispheric interactions due to the expressed EEG interactions in the bilaterally symmetric areas of both hemispheres has been found. A different type of sex-related differences in the systemic organization of interregional interactions of cortical potentials, as compared to adults, has been found in preschool children. In particular, a higher prevalence of EEG distant interactions has been found in those areas of the left hemisphere, the EEG interactions of which were higher in adult men. The data show that a distinct sexual dimorphism of interregional interactions of cortex potentials in adult subjects and children is formed due to the topology of the different EEG distant interactions differing in men and women. Investigations of the sex specificity of the spatiotemporal organization of brain bioelectric potentials in children can promote understanding of the sexual identity role in development of human brain systemic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldberg, E., The Executive Brain: Frontal Lobes and the Civilized Mind, New York: Oxford Univ. Press, 2001.

    Google Scholar 

  2. Goldberg, E., Podell, K., and Lovell, M., Lateralization of Frontal Area Functions and Cognitive Novelty, J. Neuropsychiatry Clin. Neurosci., 1994, vol. 6, no. 4, p. 371.

    PubMed  CAS  Google Scholar 

  3. Catani, M., Allin, M.P., Husain, M., et al., Symmetries in Human Brain Language Pathways Correlate with Verbal Recall, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 43, p. 17163.

    Article  PubMed  CAS  Google Scholar 

  4. Jausovec, N. and Jausovec, K., Gender Related Differences in Visual and Auditory Processing of Verbal and Figural Tasks, Brain Res., 2009, no. 1300, p. 135.

  5. Koles, Z.J., Lind, J.C., and Flor-Henry, P., Gender Differences in Brain Functional Organization during Verbal and Spatial Cognitive Challenges, Brain Topogr., 2010, no. 2, p. 199.

  6. Witelson, S.F., Hand and Sex Differences in the Isthmus and Genu of the Human Corpus Callosum. A Postmortem Morphological Study, Brain, 1989, vol. 112, no. 3, p. 799.

    Article  PubMed  Google Scholar 

  7. Cowell, P.E., Allen, L.S., Zalatimo, N.S., and Denenberg, V.H., A Developmental Study of Sex and Age Interactions in the Human Corpus Callosum, Brain Res. Dev. Brain Res., 1992, vol. 66, no. 2, p. 187.

    Article  PubMed  CAS  Google Scholar 

  8. Aboitiz, F., Rodriguez, E., Olivares, R., and Zaidel, E., Age-Related Changes in Fibre Composition of the Human Corpus Callosum: Sex Differences, Neuroreport, 1996, vol. 7, no. 11, p. 1761.

    Article  PubMed  CAS  Google Scholar 

  9. Murphy, D.G., DeCarli, C., McIntosh, A.R., et al., Sex Differences in Human Brain Morphometry and Metabolism: An in vivo Quantitative Magnetic Resonance Imaging and Positron Emission Tomography Study on the Effect of Aging, Arch. Gen. Psychiatry, 1996, vol. 53, no. 7, p. 585.

    PubMed  CAS  Google Scholar 

  10. Frederikse, M.E., Lu, A., Aylward, E., et al., Sex Differences in the Inferior Parietal Lobule, Cerebr. Cortex, 1999, vol. 9, no. 8, p. 896.

    Article  CAS  Google Scholar 

  11. Yücel, M., Stuart, G.W., Maruff, P., et al., Hemispheric and Gender-Related Differences in the Gross Morphology of the Anterior Cingulate/Paracingulate Cortex in Normal Volunteers: An MRI Morphometric Study, Cerebr. Cortex, 2001, vol. 11, no. 1, p. 17.

    Article  Google Scholar 

  12. Allen, L.S., Richey, M.F., Chai, Y.M., and Gorski, R.A., Sex Differences in the Corpus Callosum of the Living Human Being, J. Neurosci., 1991, vol. 11, p. 933.

    PubMed  CAS  Google Scholar 

  13. Geodakyan, V.A., Sexual Dimorphism, Biol. Zh. Arm., 1986, vol. 39, no. 10, p. 823.

    Google Scholar 

  14. Geodakyan, V.A., Evolutional Logic of Functional Asymmetry of the Brain, Dokl. Akad. Nauk, 1992, vol. 324, no. 6, p. 1327.

    Google Scholar 

  15. Geodakyan, V.A., Evolutional Theories of Asymmetry of the Organisms, Brain and Body, Usp. Fiziol. Nauk, 2005, vol. 36, no. 1, p. 24.

    Google Scholar 

  16. Flor-Henry, P. and Koles, Z., EEG Characteristics of Normal Subjects: a Comparison of Men and Women and of Dextral and Sinistrals, Res. Commun. Psychol. Psychiatry Behav., 1982, vol. 7, no. 1, p. 21.

    Google Scholar 

  17. Duffy, F.H., McAnulty, G.B., and Albert, M.S., Effects of Age Upon Interhemispheric EEG Coherence in Normal Adults, Neurobiol. Aging, 1996, vol. 17, no. 4, p. 587.

    Article  PubMed  CAS  Google Scholar 

  18. Volf, N.V., Functional Organization of Processes of Hemispheric Adaptation of Verbal Information, Extended Abstract of Doctoral (Biol.) Dissertation, Novosibirsk, 1997.

  19. Razumnikova, O.M., Myshlenie i funktsional’naya asimmetriya mozga (Thinking and Functional Asymmetry of the Brain), Novosibirsk: SO RAMN, 2004.

    Google Scholar 

  20. Belov, D.R., Kanunikov, I.E., and Kavshbaya, N.A., Sex Influence on the Spatial EEG Synchronization, Ross. Fiziol. Zh. im. I.M. Sechenova, 1997, vol. 83, no. 7, p. 29.

    Google Scholar 

  21. Barry, R.J., Clarke, A.R., McCarthy, R., et al., Age and Gender Effects in EEG Coherence: I. Developmental Trends in Normal Children, Clin. Neurophysiol., 2004, vol. 115, no. 10, p. 2252.

    Article  PubMed  Google Scholar 

  22. Marosi, E., Harmony, T., Becker, J., et al., Sex Differences in EEG Coherence in Normal Children, Int. J. Neurosci., 1993, vol. 72, nos. 1–2, p. 115.

    Article  PubMed  CAS  Google Scholar 

  23. Thordstein, M., Löfgren, N., Flisberg, A., et al., Sex Differences in Electrocortical Activity in Human Neonates, Neuroreport, 2006, vol. 11, no. 17, p. 1165.

    Article  Google Scholar 

  24. Benninger, C., Matthis, P., and Scheffner, D., EEG Development of Healthy Boys and Girls. Results of a Longitudinal Study, EEG Clin. Neurophysiol., 1984, vol. 57, no. 1, p. 1.

    Article  CAS  Google Scholar 

  25. Gavrish, N.E., Malykh, S.B., and Meshkova, T.A., Sexual Distinctions in EEG Spectral Characteristics in Children Aged 6–7 Years, Fiziol. Chel., 1993, vol. 19, no. 4, p. 23.

    CAS  Google Scholar 

  26. Clarke, A.R., Barry, R.J., McCarthy, R., and Selikowitz, M., Age and Sex Effects in the EEG: Development of the Normal Child, Clin. Neurophysiol, 2001, vol. 112, no. 5, p. 806.

    Article  PubMed  CAS  Google Scholar 

  27. Gorbachevskaya, N.L. and Kozhushko, L.F., The Time Course of EEG Formation in School Boys (Nine-Year Long Study), Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 1990, vol. 90, no. 8, p. 75.

    Google Scholar 

  28. Gorbachevskaya, N.L., Yakupova, L.P., Kozhushko, L.F., and Simernitskaya, E.G., Neurobiological Reasons of School Maladaptation, Fiziol. Chel., 1991, vol. 17, no. 5, p. 72.

    Google Scholar 

  29. Sullivan, E.V., Rosenbloom, M.J., Desmond, J.E., and Pfefferbaum, A., Sex Differences in Corpus Callosum Size: Relationship to Age and Intracranial Size, Neurobiol. Aging, 2001, vol. 22, no. 4, p. 603.

    Article  PubMed  CAS  Google Scholar 

  30. Luders, E., Narr, K.L., Zaidel, E., et al., Gender Effects on Callosal Thickness in Scaled and Unscaled Space, Neuroreport, 2006, vol. 17, no. 11, p. 1103.

    Article  PubMed  Google Scholar 

  31. Bragina, N.N. and Dobrokhotova, T.A., Funktsional’nye asimmetrii cheloveka (Functional Human Asymmetries), Moscow: Meditsina, 1988.

    Google Scholar 

  32. Zhavoronkova, L.A., Boldyreva, G.N., and Dobrokhotova, T.A., Dependence of the Electrical Brain Activity on Dominant Hemisphere, Vyssh. Nervn. Deyat. im. I. P. Pavlova, 1988, vol. 38, no. 4, p. 620.

    CAS  Google Scholar 

  33. Sharova, E.V., Manelis, N.G., Kulikov, M.A., and Barkalaya, D.B., Influence of the Brainstem Structures on Formation of Hemisphere Functional State in Human (Data of Complex Clinical Electroencephalographic and Neuropsychological Study), Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1995, vol. 45, no. 5, p. 876.

    CAS  Google Scholar 

  34. Boldyreva, G.N., Zhavoronkova, L.A., Sharova, E.V., and Dobronravova, I.S., Intercenter EEG Interactions as Reflection of Systemic Organization of Human Brain in Norm and Patology, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2003, vol. 53, no. 4, p. 391.

    CAS  Google Scholar 

  35. Boldyreva, G.N., Neirofiziologicheskii analiz porazheniya limbiko-dientsefal’nykh struktur mozga cheloveka (Neurophysiologic Analysis of Damages of Limbic-Diencephalic Structures of the Human Brain), Krasnodar: Ekoinvest, 2009.

    Google Scholar 

  36. McGlone, J., Sex Differences in Human Brain Asymmetry: a Critical Survey, Behav. Brain. Sci, 1980, vol. 3, p. 2153.

    Google Scholar 

  37. Panasevich, E.A. and Tsitseroshin, M.N., Particularities of the Spatiotemporal EEG Organization in Verbal Task Managing in Men and Women, Sens. Sist., 2004, vol. 18, no. 2, p. 148.

    Google Scholar 

  38. Jaeger, J.J., Lockwood, A.H., Van Valin, R.D., Jr., et al., Sex Differences in Brain Regions Activated by Grammatical and Reading Tasks, Neuroreport, 1998, vol. 9, no. 12, p. 2803.

    Article  PubMed  CAS  Google Scholar 

  39. Vikingstad, E.M., George, K.P., Johnson, A.F., and Cao, Y., Cortical Language Lateralization in Right Handed Normal Subjects Using Functional Magnetic Resonance Imaging, J. Neurol. Sci., 2000, vol. 175, no. 1, p. 17.

    Article  PubMed  CAS  Google Scholar 

  40. Baxter, L.C., Saykin, A.J., Flashman, L.A., et al., Sex Differences in Semantic Language Processing: a Functional MRI Study, Brain Lang, 2003, vol. 84, no. 2, p. 264.

    Article  PubMed  CAS  Google Scholar 

  41. Kaiser, A., Kuenzli, E., Zappatore, D., and Nitsch, C., On Females’ Lateral and Males’ Bilateral Activation during Language Production: a fMRI Study, Int. J. Psychophysiol., 2007, vol. 63, no. 2, p. 192.

    Article  PubMed  Google Scholar 

  42. Bezrukikh, M.M. and Komkova, Yu.N., Intellectual Development of Boys and Girls Aged 15–16 years. Psychophysiological Structure, Fiziol. Chel., 2010, vol. 36, no. 4, p. 57.

    CAS  Google Scholar 

  43. Palmer, D. and Palmer, L., Evolyutsionnaya psikhologiya. Sekrety povedeniya Homo-sapiens (Evolution Psychology. Behavioral Secrets of Homo Sapiens), St. Petersburg: Praim-EVROZNAK, 2003.

    Google Scholar 

  44. Panasevich, E.A., Sex-Related Features of the Spatiotemporal Organization of the Brain Bioelectric Potential Interactions in Adults and Children, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St. Petersburg, 2009.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Panasevich, M.N. Tsitseroshin, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 4, pp. 13–25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasevich, E.A., Tsitseroshin, M.N. Sex specificity of the spatiotemporal organization of brain bioelectric potentials in adults and five- to six-year-old children in a state of quiet wakefulness. Hum Physiol 37, 402–412 (2011). https://doi.org/10.1134/S0362119711040141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711040141

Keywords

Navigation