Skip to main content
Log in

Central mechanisms of the sleep-wakefulness cycle control

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The notions on the anatomical, physiological and neurochemical mechanisms of the regulation of wakefulness, slow wave (NREM) sleep and paradoxical (REM) sleep formed by the end of the first decade of the 21st century are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noirhomme, Q., Laureys, S., and Boly, M., Sleep vs Coma, Front. Neurosci., 2009, vol. 3, no. 3, p. 406.

    Google Scholar 

  2. Datta, S. and Lean, R.R., Neurobiologisal Meshanisms for the Regulation of Mammalian Sleep-Wake Behavior: Reinterpretation of historical evidence and inclusion of Contemporary Cellular and Molecular Evidence, Neurossi. Biobehav. Rev., 2007, vol. 31, p. 775.

    Article  CAS  Google Scholar 

  3. Koval’zon, V.M., On Sleep Functions, Zh. Evol. Biokhim. Fiziol., 1993, nos. 5–6, p. 627.

  4. Datta, S., Cellular and Chemical Neuroscience of Mammalian Sleep, Sleep Med., 2010, vol. 11, p. 431.

    Article  PubMed  Google Scholar 

  5. España, R.A. and Scammell, T.E., Sleep Neurobiology for the Clinician, Sleep, 2004, vol. 27, no. 4, p. 811.

    PubMed  Google Scholar 

  6. Jones, B.E., Activity, Modulation and Role of Basal Forebrain Cholinergic Neurons Innervating the Cerebral Cortex, Prog. Brain Res., 2004, vol. 145, p. 157.

    Article  PubMed  CAS  Google Scholar 

  7. Jones, B.E., Arousal Systems, Front. Biosci, 2003, vol. 8, Suppl., p. S438.

    Article  Google Scholar 

  8. Jones, B.E., Basic Mechanisms of Sleep-Wake States, in Principles and Practice of Sleep Medicine, Kryger, M.H., Roth, T., and Dement, W.C, Eds., Amsterdam: Elsevier, 2005, 4th edition, p. 136.

    Chapter  Google Scholar 

  9. Jones, B.E., From Waking to Sleeping: Neuronal and Chemical Substrates, Trends Pharmacol. Sci., 2005, vol. 26, no. 11, p. 578.

    Article  PubMed  CAS  Google Scholar 

  10. Jones, B.E., Modulation of Cortical Activation and Behavioral Arousal by Cholinergic and Orexinergic Systems, Ann. N.Y. Acad. Sci., 2008, vol. 1129, p. 26.

    Article  PubMed  CAS  Google Scholar 

  11. Steriade, M., Sleep and Neuronal Plasticity: Cellular Mechanisms of Corticothalamic Oscillations, Sleep Circuits and Functions, Luppi, P.-H., Ed., Boca Raton: CRC, 2005, p. 4.

    Google Scholar 

  12. Nir, Y. and Tononi, G., Dreaming and the Brain: from Phenomenology to Neurophysiology, Trends Cogn. Sci., 2010, vol. 14, no. 2, p. 88.

    Article  PubMed  Google Scholar 

  13. Blanco-Centurion, C., Adenosine and Sleep Homeostasis in the Basal Forebrain, J. Neurosci., 2006, vol. 26, no. 31, p. 8092.

    Article  PubMed  CAS  Google Scholar 

  14. Basheer, R., Strecker, R.E., Thakkar, M.M., and McCarley, R.W., Adenosine and Sleep-Wake Regulation, Progr. Neurobiol., 2004, vol. 73, p. 379.

    Article  CAS  Google Scholar 

  15. Huang, Z.-L., Urade, Y., and Hayaishi, O., Prostaglandins and Adenosine in the Regulation of Sleep and Wakefulness, Curr. Opin. Pharmacol., 2007, vol. 7, p. 33.

    Article  PubMed  CAS  Google Scholar 

  16. Landolt, H.-P., Sleep Homeostasis: A Role for Adenosine in Humans?, Biochem. Pharmacol., 2008, vol. 75, p. 2070.

    Article  PubMed  CAS  Google Scholar 

  17. Morairty, S., Rainnie, D., McCarley, R., and Greene, R., Disinhibition of Ventrolateral Preoptic Area Sleep-Active Neurons by Adenosine: a New Mechanism for Sleep Promotion, Neuroscience, 2004, vol. 123, no. 2, p. 451.

    Article  PubMed  CAS  Google Scholar 

  18. Pigarev, I.N., Neurons of Visual Cortex Respond to Visceral Stimulation During Slow Wave Sleep, Neuroscience, 1994, vol. 62, no. 4, p. 1237.

    Article  PubMed  CAS  Google Scholar 

  19. Bassetti, C.L, Bischof, M., and Valko, P., Dreaming: A Neurological View, in Psychoanalysis and Neuroscience, Mancia, M., Ed., Milan: Springer, 2006, p. 351.

    Chapter  Google Scholar 

  20. Fort, P., Bassetti, C.L., and Luppi, P.-H., Alternating Vigilance States: New Insights Regarding Neuronal Networks and Mechanisms, Eur. J. Neurosci., 2009, vol. 29, p. 1741.

    Article  PubMed  CAS  Google Scholar 

  21. McCarley, R.W., Neurobiology of REM and NREM Sleep, Sleep Med., 2007, vol. 8, p. 302.

    Article  PubMed  Google Scholar 

  22. Sakai, K. and Crochet, S., Pontine Structures and Mechanisms Involved in the Generation of Paradoxical (REM) Sleep, Arch. Ital. Biol., 2001, vol. 139, p. 93.

    PubMed  CAS  Google Scholar 

  23. Siegel, J.M., REM Sleep, Principles and Practice of Sleep Medicine, Kryger, M.H., Roth, T., and Dement, W.C., Eds., Amsterdam: Elsevier, 2005, 4th edition, p. 120.

    Chapter  Google Scholar 

  24. Solms, M., Freudian Dreams Today, Front. Neurosci., 2009, vol. 3, no. 3, p. 453.

    Google Scholar 

  25. Lu, J., Sherman, D., Devor, M., and Saper, C.B., A Putative Flip-Flop Switch for Control of REM Sleep, Nature, 2006, vol. 441, no. 7093, p. 589.

    Article  PubMed  CAS  Google Scholar 

  26. Rosenwasser, A.M., Functional Neuroanatomy of Sleep and Circadian Rhythms, Brain Res. Rev., 2009, vol. 61, p. 281.

    Article  PubMed  Google Scholar 

  27. Dang-Vu, T.T., Desseilles, M., Petit, D., et al., Neuroimaging in Sleep Medicine, Sleep Med., 2007, vol. 8, p. 349.

    Article  PubMed  Google Scholar 

  28. Domhoff, G.W., Foundations for a New Neurocognitive Theory of Dreams, Front. Neurosci., 2009, vol. 3, no. 3, p. 439.

    Google Scholar 

  29. Roffwarg, H.R., Participation of REM Sleep in the Development of the Brain: Starting Hypothesis, Unfolding Data, Current Perspective, SRS Bulletin, 2009, vol. 15, no. 2, p. 6.

    Google Scholar 

  30. Adamantidis, A. and de Lecea, L., Physiological Arousal: a Role for Hypothalamic Systems, Cell. Mol. Life Sci., 2008, vol. 65, p. 1475.

    Article  PubMed  CAS  Google Scholar 

  31. Kilduff, T.S. and Peyron, C., The Hypocretin/Orexin Ligand-Receptor System: Implications for Sleep and Sleep Disorders, Trends Neurosci., 2000, vol. 23, no. 8, p. 359.

    Article  PubMed  CAS  Google Scholar 

  32. Kilduff, T.S., Hypocretin/Hypocretin: Maintenance of Wakefulness and a Multiplicity of Other Roles, Sleep Med. Rev., 2005, vol. 9, p. 227.

    Article  PubMed  Google Scholar 

  33. Matsuki, T and Sakurai, T, Orexins and Orexin Receptors: From Molecules to Integrative Physiology, in Orphan G-Protein-Coupled Receptors and Novel Neuropeptides, vol. 46 of Results Probl. Cell Differ., Civelli, O. and Zhou, Q.-Y., Eds., Berlin: Springer, 2008, p. 27.

    Google Scholar 

  34. Sakurai, T., Physiological Reviews: Roles of Hypocretin/Hypocretin in Regulation of Sleep/Wakefulness and Energy Homeostasis, Sleep Med. Rev., 2005, vol. 9, p. 231.

    Article  PubMed  Google Scholar 

  35. Ferguson, A.V. and Samson, W.J., The Orexin/Hypocretin System: A Critical Regulator of Neuroendocrine and Autonomic Function, Front. Neuroendocrinol., 2003, vol. 24, no. 1, p. 141.

    Article  PubMed  CAS  Google Scholar 

  36. Scammel, T.E., An Eye-Opening Perspective on Orexin Neurons, Current Biol., 2001, vol. 11, p. 769.

    Article  Google Scholar 

  37. John, J., Cataplexy-Active Neurons in the Hypothalamus: Implications for the Role of Histamine in Sleep and Waking Behavior, Neuron, 2004, vol. 42, no. 5, p. 619.

    Article  PubMed  CAS  Google Scholar 

  38. Siegel, J.M., Hypocretin (Orexin): Role in Normal Behavior and Neuropathology, Ann. Rev. Psychol., 2004, vol. 55, no. 2, p. 125.

    Article  Google Scholar 

  39. Mignot, E., Perspectives in Narcolepsy and Hypocretin (Orexin) Research, Sleep Med., 2000, vol. I, no. 1, p. 87.

    Article  Google Scholar 

  40. Siegel, J.M., Moore, R., Thannickal, T., and Nienhuiset, R., A Brief History of Hypocretin/Orexin and Narcolepsy, Neuropsychopharmacology, 2001, vol. 25, no. S5, p. 14.

    Article  Google Scholar 

  41. Mignot, E., Narcolepsy As a Model for Brain Autoimmune Diseases, Front. Neurosci., 2009, vol. 3, no. 3, p. 426.

    Google Scholar 

  42. Baumann, C.R. and Bassetti, C.L., Hypocretins (Orexins): Clinical Impact of the Discovery of a Neurotransmitter, Sleep Med. Rev, 2005, vol. 9, p. 253.

    Article  PubMed  Google Scholar 

  43. Saper, C.B., Scammell, T.E., and Lu, J., Hypothalamic Regulation of Sleep and Circadian Rhythms, Nature, 2005, vol. 437, p. 1257.

    Article  PubMed  CAS  Google Scholar 

  44. Torterolo, P., Sampogna, S., Morales, F.R., and Chase, M.H., MCH-Containing Neurons in the Hypothalamus of the Cat: Searching for a Role in the Control of Sleep and Wakefulness, Brain Res., 2006, vol. 1119, no. 1, p. 101.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Koval’zon, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 4, pp. 124–134.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koval’zon, V.M. Central mechanisms of the sleep-wakefulness cycle control. Hum Physiol 37, 500–508 (2011). https://doi.org/10.1134/S0362119711040116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711040116

Keywords

Navigation