Skip to main content
Log in

Physiological analysis of the possible causes of hypoxemia under conditions of weightlessness

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

It was found that the partial oxygen tension in the capillary blood in astronauts during a space flight was 12–30% lower than that before the space flight. Analysis of the possible causes and mechanisms of hypoxemia was performed, which made it possible to conclude that an increase in the venous blood flow that passes through the lungs and does not undergo complete gas exchange in the pulmonary capillaries is most likely to be the main cause of the decrease in the oxygen tension in the blood in astronauts under conditions of weightlessness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gazenko, O.G., Grigor’ev, A.I., and Egorov, A.D., Reactions of the Human Body during a Space Flight, in Fiziologicheskie problemy nevesomosti (Physiological Problems of Weightlessness), Moscow: Meditsina, 1990, p. 15.

    Google Scholar 

  2. Space Physiology and Medicine, Nicogossian, A.E., Huntoon, C.L., and Pool, S.L., Eds., London: Lea and Febiger, 1989.

    Google Scholar 

  3. Kas’yan, I.I. and Kopanev, V.I., Physiological Aspects of Weightlessness, Izv. AN SSSR, Ser. Biol., 1967, no. 4, p. 489.

  4. Berry, C.A., Summary of Medical Experience in Apollo 7 through 11 Manned Spaceflights, Aerosp. Med., 1970, vol. 41, p. 500.

    PubMed  CAS  Google Scholar 

  5. Pestov, I.D. and Geratevol’, Z.Dzh., Weightlessness, in Osnovy kosmicheskoi biologii i meditsiny (Fundamentals of Space Biology and Medicine), Moscow: Nauka, 1975, vol. 2, part 1, p. 324.

    Google Scholar 

  6. Kovalenko, E.A. and Kas’yan, I.I., On the Pathogenesis of the Effects of Weightlessness on the Human Body, in Fiziologicheskie problemy nevesomosti (Physiological Aspects of Weightlessness), Moscow: Meditsina, 1990, p. 215.

    Google Scholar 

  7. Grigor’ev, A.I. and Egorov, A.D., Long-Term Space Flights, in Kosmicheskaya biologiya i meditsina (Space Biology and Medicine), Moscow: Nauka, 1997, vol. 3, part 2, p. 368.

    Google Scholar 

  8. Baranov, V.M., Gas-Energy Exchange and External Respiration in Humans during Space Flights and Model Studies, in Problemy kosmicheskoi biologii (Aspects of Space Biology), Moscow: Nauka, 1993, vol. 75.

    Google Scholar 

  9. Baranov, V.M., Kotov, A.N., and Tikhonov, M.A., Functional State of Respiratory Muscles and Physical Work Capacity under Conditions of Long-Term Weightlessness, in Puti optimizatsii funktsii dykhaniya pri nagruzkakh, v patologii i ekstremal’nykh sostoyaniyakh (Ways of Optimization of Respiratory Function during Exercise and under Pathological and Extreme Conditions), Tver: Tversk. Gos. Univ., 1995, p. 3.

    Google Scholar 

  10. Baranov, V.M., Kotov, A.N., and Tikhonov, M.A., Studies of Ventilatory Function of the Lungs and Respiratory Biomechanics during Long-Term Space Flights, in Orbital’naya stantsiya Mir. Kosmicheskaya biologiya i meditsina, tom 2. Mediko-biologicheskie eksperimenty (Mir Orbital Station: Space Biology and Medicine, vol. 2: Biomedical Experiments), Moscow: Anikom, 2002, p. 17.

    Google Scholar 

  11. Baranov, V.M., Aleksandrova, N.P., and Tikhonov, M.A., Evaluation of Spare Capacities of the Respiratory Muscles during Hypokinesia, J. Gravit. Physiol., 2005, vol. 12, no. 1, p. 77.

    Google Scholar 

  12. Vatsek, A., Kovalenko, E.A., Bobrovnitskii, M.P., et al., Oxygen Tension in the Superficial Tissues in Astronauts under the Conditions of Weightlessness, in Aviakosmicheskaya meditsina (Aerospace Medicine) (Abstr. VI All-Union Conference on Space Biology and Aerospace Medicine), Moscow, 1979, part 2, p. 190.

  13. Kovalenko, E.A., Vatsek, A., Khaze, G., et al., Effect of Weightlessness on Tissue Oxygenation, in Kosmicheskaya biologiya i aviakosmicheskaya meditsina (Space Biology and Aerospace Medicine) (Abstr. VII All-Union Conference on Space Biology and Aerospace Medicine), Moscow, 1982, part 1, p. 143.

  14. Fenner, A., Muller, R., Busse, H.G., et al., Transcutaneous Determination of Oxygen Tension, Pediatrics, 1975, vol. 55, p. 224.

    PubMed  CAS  Google Scholar 

  15. Dennhardt, R., Fricke, M., Mahal, S., et al., Transcutaneous PO2 Monitoring in Anesthesia, Eur. J. Intens. Care Med., 1976, vol. 2, no. 1, p. 29.

    Article  CAS  Google Scholar 

  16. Peabody, J.L., Gregory, G.A., Willis, M.M., et al., Transcutaneous Oxygen Tension in Sick Infants, Am. Rev. Resp. Diseases, 1978, vol. 118, p. 83.

    CAS  Google Scholar 

  17. Pollitzer, M.J., Whitchead, M.D., Reynolds, E.O., et al., Effect of Electrode temperature and in vivo Calibration on Accuracy of Transcutaneous Estimation of Arterial Oxygen Tension in Infants, Pediatrics, 1980, vol. 65, no. 3, p. 515.

    PubMed  CAS  Google Scholar 

  18. Kanaev, N.N., External Respiratory System and Its Failure, in Rukovodstvo po klinicheskoi fiziologii dykhaniya (Handbook on Clinical Physiology of Respiration), Leningrad: Meditsina, 1980, p. 9.

    Google Scholar 

  19. Kakurin, L.I., Baevskii, R.M., Baranov, V.M., et al., Hemodynamics and External Respiratory Function, in Rezul’taty issledovanii vypolnennykh na orbitalnom nauchno-issledovatel’skom komplekse Salyut-6-Soyuz (Results of Studies in the Salyut-6-Soyuz Orbital Research Complex), Moscow: Nauka, 1986, p. 258.

    Google Scholar 

  20. Elliott, A.R., Prisk, G.K., Guy, H.J.B., and West, J.B., Lung Volumes during Sustained Microgravity on Spacelab SLS-1, J. Appl. Physiol., 1994, vol. 77, p. 2005.

    PubMed  CAS  Google Scholar 

  21. Deitrick, J.E., Whedon, E., and Shorr, E., Effects of Immobilization upon Various Metabolic and Physiologic Functions of Normal Man, Am. J. Med., 1948, vol. 4, p. 3.

    Article  PubMed  CAS  Google Scholar 

  22. Vogt, F.B., Berry, P., Johnson, P.C., and Wade, L., Tilt Table Response and Blood Volume Changes Associated with Fourteen Days of Recumbency, Aerospace Med., 1967, vol. 38, p. 43.

    Google Scholar 

  23. Guy, H.J., Prisk, G.K., and West, J.B., Pulmonary Function in Microgravity Spacelab-4 and beyond, Acta Astronaut., 1988, vol. 17, no. 10, p. 1139.

    Article  PubMed  CAS  Google Scholar 

  24. Bates, D.V. and Pearce, J.F., The Pulmonary Diffusion Capacity: A Comparison of Methods of Measurement and a Study of the Effect of Body Position, J. Physiol., 1956, vol. 132, p. 232.

    PubMed  CAS  Google Scholar 

  25. Kotov, A.N., Pulmonary Diffusing Capacity in Man during the Prevention Effect of Changed Gas Medium and Exercise in Case of Limited Motor Activity, Cand. Sci. (Med.) Dissertation, Moscow, 1977.

  26. Prisk, G.K., Guy, H.J., Elliott, A.R., et al., Pulmonary Diffusing Capacity, Capillary Blood Volume, and Cardiac Output during Sustained Microgravity, J. Appl. Physiol., 1993, vol. 75, p. 15.

    PubMed  CAS  Google Scholar 

  27. Savitskii, N.N. Kislorodnaya terapiya (Oxygen Therapy), Leningrad, 1940.

  28. Shik, L.L., Inadequacy of Pulmonary Ventilation, in Rukovodstvo po klinicheskoi fiziologii dykhaniya (Handbook of Clinical Physiology of Respiration), Leningrad: Medicine, 1980, p. 128.

    Google Scholar 

  29. Bates, D.V., Measurement of Regional Ventilation and Blood Flow Distribution, Handbook of Physiology. Section 3: Respiration, Washington, 1965, vol. 2, p. 1425.

    Google Scholar 

  30. Zilber, A.P., Regionarnye funktsii legkikh: Klinicheskaya fiziologiya neravnomernosti ventilyatsii i krovotoka (Regional Functions of the Lungs: Clinical Physiology of Inadequacy between Ventilation and Blood Flow), Petrozavodsk, 1971.

  31. Fowler, W.S., Intrapulmonary Distribution of Inspired Gas, Physiol. Rev., 1952, vol. 32, p. 1.

    PubMed  CAS  Google Scholar 

  32. Navratil, M., Kadlets, K., and Daum, C., Patofiziologiya dykhaniya (Respiratory Pathophysiology), Moscow, 1967.

  33. West, J.B., Regional Differences in Blood Flow and Ventilation in the Lung, in Advances in Respiratory Physiology, London: Baltimore, 1966, p. 198.

    Google Scholar 

  34. Dollery, C.T., West, J.B., Wilcken, D.E.L., et al., Regional Pulmonary Blood Flow in Patients with Circulatory Shunts, Brit. Heart J., 1961, vol. 23, no. 3, p. 225.

    Article  PubMed  CAS  Google Scholar 

  35. Glazier, J.B. and De Nardo, G.L., Pulmonary Function Studied with Xenon-133 Scanning Technique: Normal Values and a Postural Study, Am. Rev. Resp. Diseases, 1966, vol. 94, p. 188.

    CAS  Google Scholar 

  36. Milic-Emili, J., Henderson, J.A., Dolovich, M.B., et al., Regional Distribution of Inspired Gas in the Lung, J. Appl. Physiol., 1966, vol. 21, p. 749.

    PubMed  CAS  Google Scholar 

  37. Daum, C., Pulmonary Circulation, in Patofiziologiya dykhaniya (Respiratory Pathophysiology), Moscow, 1967, p. 199.

  38. Gravitational Stress in Aerospace Medicine, Gauer, O.H. and Znidema, J.D., Eds., Boston: Little Brown, 1961.

    Google Scholar 

  39. Raine, J.M., The Influence of Age and Posture on Some Aspects of Lung Function, Med. J. Austr., 1965, vol. 1, p. 791.

    CAS  Google Scholar 

  40. Glaister, D.H., Regional Ventilation and Perfusion in Lung during Positive Acceleration Measured with 133Xe, J. Physiol., 1965, vol. 177, p. 73.

    Google Scholar 

  41. Dowell, A.R., Schaal, S.F., Spielvogel, R., et al., Effect of Lower Body Negative Pressure upon Pulmonary Ventilation as Measured Using Xenon-133, Aerospace Med., 1969, vol. 40, p. 651.

    PubMed  CAS  Google Scholar 

  42. Bjurstedt, H., Hesser, C.M., Liljestrand, G., et al., Effects of Posture on Alveolar Arterial CO2 and O2 Differences and on Alveolar Dead Space in Man, Acta Physiol. Scand., 1962, vol. 54, p. 65.

    Article  PubMed  CAS  Google Scholar 

  43. Antonisen, N.R., Robertson, P.C., Ross, and W.R.D., Gravity-Dependent Sequential Emptying of Lung Regions, J. Appl. Physiol., 1970, vol. 28, p. 589.

    Google Scholar 

  44. Belkaniya, G.S., Respiratory Function and Gravity, Kosm. Biol. Aviakosm. Med., 1975, vol. 9, no. 2, p. 3.

    Google Scholar 

  45. Fowler, K.T., Vertical Gradient of Perfusion in the Erect Human Lung, J. Appl. Physiol., 1965, vol. 20, p. 1163.

    Google Scholar 

  46. Dvoretskii, D.P. and Tkachenko, B.I., Gemodinamika v legkikh (Pulmonary Hemodynamics), Moscow: Meditsina, 1987.

    Google Scholar 

  47. Mead, J., Whittenberger, J.L., and Radford, E.P., Surface Tension as a Factor in Pulmonary Volume-Pressure Hysteresis, J. Appl. Physiol., 1957, vol. 10, no. 2, p. 191.

    PubMed  CAS  Google Scholar 

  48. Zil’ber, A.P., Dykhatel’naya nedostatochnost’ (Respiratory Failure), Moscow: Meditsina, 1989.

    Google Scholar 

  49. Mailyan, E.S., Buravkova, L.B., and Kokoreva, L.V., Energy Reactions in Skeletal Muscles in Rats after Space Flight in the Kosmos-936 Biosatellite, Kosm. Biol. Aviakosm. Med., 1982, vol. 16, no. 6, p. 34.

    CAS  Google Scholar 

  50. Kondrashova, M.N., Mironova, G.D., and Akhmyarov, R.K., The Role of Peroxidase Systems as a Compensating Factor during Hypoxia, Kletochnoe dykhanie v norme i v usloviyakh gipoksii (Cellular Respiration under Normal and Hypoxic Conditions) (Abstr. Conf.), Gorkii, 1973, p. 93.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Baranov, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 4, pp. 72–78.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov, V.M. Physiological analysis of the possible causes of hypoxemia under conditions of weightlessness. Hum Physiol 37, 455–460 (2011). https://doi.org/10.1134/S0362119711040050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711040050

Keywords

Navigation