Skip to main content
Log in

Concentration of light hydrocarbons in exhaled air depending on metabolic syndrome risk factors

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The effect of metabolic syndrome risk factors on the content of light hydrocarbons (C2-C3) in exhaled air has been studied with the participation of students of Novosibirsk State Medical University. Gas chromatography was performed in an EKHO-EW-FID chromatograph with a short multichannel column. The study revealed sex-related differences between the concentrations of light hydrocarbons in exhaled air. In addition, some factors, such as smoking and type 2 diabetes mellitus in relatives, affect the content of C2-C3 compounds in exhaled air of women only. However, overweight is correlated with the content of acetone (C3) in exhaled air only in men. Thus, the metabolic changes caused by the presence of age-specific metabolic syndrome risk factors lead to the changes in the gas composition of exhaled air and can be detected and used for early diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balabolkin, M.I., Diabetes mellitus: Is It Possible to Control Its Spread and Frequency of Complications? Terap. Arkhiv, 1993, no. 10, p. 4.

  2. Eckel, R.H., Grundy, S.M., and Zimmet, P.Z., The Metabolic Syndrome, Lancet, 2005, vol. 9468, no. 365, p. 1415.

    Article  Google Scholar 

  3. Lee, K., Usefulness of the Metabolic Syndrome Criteria as Predictors of Insulin Resistance among Obese Korean Women, Public Health Nutr., 2010, vol. 13, no. 2, p. 181.

    Article  PubMed  Google Scholar 

  4. Gil-Campos, M., Aguilera, C.M., Cañete, R., and Gil, A., Uric Acid is Associated with Features of Insulin Resistance Syndrome in Obese Children at Prepubertal Stage, Nutr. Hosp., 2009, vol. 24, no. 5, p. 607.

    PubMed  CAS  Google Scholar 

  5. Puchau, B., Zulet, M.A., Urtiaga, G., et al., Asymmetric Dimethylarginine Association with Antioxidants Intake in Healthy Young Adults: a Role as an Indicator of Metabolic Syndrome Features, Metabolism, 2009, vol. 58, no. 10, p. 1483.

    Article  PubMed  CAS  Google Scholar 

  6. Agirbasli, M., Agaoglu, N.B., Orak, N., et al., Sex Hormones and Metabolic Syndrome in Children and Adolescents, Metabolism, 2009, vol. 58, no. 9, p. 1256.

    Article  PubMed  CAS  Google Scholar 

  7. Phillips, M., Herrera, J., Krishnan, S., et al., Variation in Volatile Organic Compounds in the Breath of Normal Humans, J. Chromatogr. B. Biomed. Sci. Appl., 1999, vol. 729, nos. 1–2, p. 75.

    Article  PubMed  CAS  Google Scholar 

  8. Lukash, S.I., Voytovich, I.D., and Alers, Kh., Peculiarities of the Work of Matrix Semiconductor Sensors in “Electron Nose” System (Part I), Komp. Zas. Merezhi Sist., 2007, no. 6, p. 81.

  9. Moshkin, M.P., Gerlinskaya, L.A., and Evsikov, V.I., The Role of the Immune System in Behavioral Strategies of Reproduction, J. Reprod. Dev., 2000, vol. 46, no. 6, p. 341.

    Article  CAS  Google Scholar 

  10. Akulov, A.E., Petrovskii, D.V., and Moshkin, M.P., Antigenic Stimulation as a Factor Modulating Social Behavior and Chemosignals of Male Laboratory Mice, Zh. Vyssh. Nervn. Deyat., 2009, vol. 59, no. 3, p. 335.

    CAS  Google Scholar 

  11. Phillips, M., Detection of Volatile Organic Compounds in Breath, in Disease Markers in Exhaled Breath, Marczin, N., Kharitonov, S.A., Yacoub, M.H., and Barnes, P.J., Eds., New York: Marcel Dekker, 2002.

    Google Scholar 

  12. Buszewski, B., Ulanowska, A., Ligor, T., et al., Analysis of Exhaled Breath from Smokers, Passive Smokers and Non-smokers by Solid-Phase Microextraction Gas Chromatography/Mass Spectrometry, Biomed. Chromatogr., 2009, vol. 23, no. 5, p. 551.

    Article  PubMed  CAS  Google Scholar 

  13. Bajtarevich, A., Ager, C., Pienz, M., et al., Noninvasive Detection of Lung Cancer by Analysis of Exhaled Breath, BMC Cancer, 2009, no. 9, p. 348.

  14. Van der Velde, S., Nevens, F., Van Hee, P. et al., GC-MS Analysis of Breath Odor Compounds in Liver Patients, J. Chormatogr. B. Analyt. Technol. Biomed. Life Sci., 2008, vol. 875, no. 2, p. 344.

    Article  Google Scholar 

  15. Ueta, I., Saito, Y., Hosoe, M., et al., Breath Acetone Analysis with Miniaturized Sample Preparation Device: In-needle Preconcentration and Subsequent Determination by Gas Chromatography-Mass Spectrometry, J. Chormatogr. B. Analyt. Technol. Biomed. Life Sci., 2009, vol. 877, no. 24, p. 2551.

    Article  CAS  Google Scholar 

  16. Musa-Veloso, K., Likhodii, S.S., and Cunnane, S.C., Breath Acetone Is a Reliable Indicator of Ketosis in Adults Consuming Ketogenic Meals, Am. J. Clin. Nutr., 2002, vol. 76, no. 1, p. 65.

    PubMed  CAS  Google Scholar 

  17. Galassetti, P.R., Novak, B., Nemet, D., et al., Breath Ethanol and Acetone as Indicators of Serum Glucose Levels: an Initial Report, Diabetes Technol. Ther., 2005, vol. 7, no. 1, p. 115.

    Article  PubMed  CAS  Google Scholar 

  18. Kalapos, M.P., Possible Physiological Roles of Acetone Metabolism in Humans, Med. Hypotheses, 1999, vol. 53, no. 3, p. 236.

    Article  PubMed  CAS  Google Scholar 

  19. Mörk, A.K. and Johanson, G., A Human Physiological Model Describing Acetone Kinetics in Blood and Breath during Various Levels of Physical Exercise, Toxicol. Lett., 2006, vol. 164, no. 1, p. 6.

    Article  PubMed  Google Scholar 

  20. White, M.A., NcKee, S.A., and O’Malley, S.S., Smoke and Mirrors: Magnified Beliefs that Cigarette Smoking Suppresses Weight, Addict. Behav., 2007, vol. 32, no. 10, p. 2200.

    Article  PubMed  Google Scholar 

  21. Vanni, H., Kazeros, A., Wang, R., et al., Cigarette Smoking Influences Overexpression of a Fat-Depleting Gene AZGP1 in the Human, Chest, 2009, vol. 135, no. 5, p. 1197.

    Article  PubMed  CAS  Google Scholar 

  22. Novak, B.J., Blake, D.R., Meinardi, S., et al., Exhaled Methyl Nitrate as a Noninvasive Marker of Hyperglycemia in Type 1 Diabetes, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 40, p. 15613.

    Article  PubMed  CAS  Google Scholar 

  23. Teschke, R. and Heymann, K., Effect of Sex Hormones on the Activities of Hepatic Alcohol-Metabolizing Enzymes in Male Rats, Enzyme, 1982, vol. 28, no. 4, p. 268.

    CAS  Google Scholar 

  24. Simon, F.R., Fortune, J., Iwahashi, M., and Sutherland, E., Sexual Dimorphic Expression of ADH in Rat Liver: Importance of the Hypothalamic-Pituitary-Liver Axis, Am. J. Physiol. Gastrointest. Liver Physiol., 2002, vol. 283, no. 3, p. G646.

    PubMed  CAS  Google Scholar 

  25. Kishimoto, R., Ogishi, Y., Ueda, M., et al., Gender-Related Differences in Mouse Hepatic Ethanol Metabolism, J. Nutr. Sci. Vitaminol, 2002, vol. 48, no. 3, p. 216.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Y. Kulikov, L.A. Ruyatkina, M.Y. Sorokin, E.S. Shabanova, M.N. Baldin, V.M. Gruznov, A.P. Efimenko, D.V. Petrovsky, E.P. Shnaider, M.P. Moshkin, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 3, pp. 70–75.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulikov, V.Y., Ruyatkina, L.A., Sorokin, M.Y. et al. Concentration of light hydrocarbons in exhaled air depending on metabolic syndrome risk factors. Hum Physiol 37, 329–333 (2011). https://doi.org/10.1134/S0362119711030078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711030078

Keywords

Navigation