Skip to main content
Log in

Acoustic estimation of the impact of a single dive using a closed-type breathing apparatus on the ventilatory function of the human lungs

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Diving negatively affects the human respiratory system, especially if an oxygen breathing apparatus is used. The spirometry indices generally used to estimate the ventilatory function of the lung have a poor sensitivity to the toxic effect of hyperbaric hyperoxia. The goal of this study was to estimate the possibilities of using the forced expiratory (FE) tracheal noise duration. The study was done on 48 divers who had been tested before and after a single dive.

A significant decrease in the spirography volumes but within normal limits was seen totally in the group. In analyzing individual responses, a significant increase in the FE tracheal noise duration above the normal range (19.6%, p < 0.05) was found in ten subjects (20.8%). Respiratory symptoms that were typical of the initial manifestations of pulmonary oxygen intoxication were found in three cases in these subjects. In the remaining seven subjects, the asymptomatic increase in the FE tracheal noise duration was classified as a sign of the latent preclinical phase of the hyperbaric hyperoxia effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cotes, J.E., Davey, I.S., Reed, J.W., and Rooks, M., Respiratory Effects of a Single Saturation Dive to 300 m, Br. J. Ind. Med, 1987, vol. 44, p. 76.

    PubMed  CAS  Google Scholar 

  2. Thorsen, E., Segadal, K., Myrseth, E., Pasche, A., and Gulsvik, A., Pulmonary Mechanical Function and Diffusion Capacity after Deep Saturation Dives, Br. J. Ind. Med., 1990, vol. 47, p. 242.

    PubMed  CAS  Google Scholar 

  3. Thorsen, E., Segadal, K., and Kambestad, B.K., Mechanisms for Reduced Pulmonary Function after a Saturation Dive, Eur. Respir. J., 1994, vol. 4, p. 4.

    Article  Google Scholar 

  4. Skogstad, M., Thorsen, E., Haldorsen, T., et al., Divers’ Pulmonary Function after Open-Sea Bounce Dives to 10 and 50 Meters, Undersea Hyperb. Med., 1996, vol. 23, p. 71.

    PubMed  CAS  Google Scholar 

  5. Neubauer, B. and Tetzlaff, K., Prospective Lung Function Determination Using an Electronic Miniature Spirometer for Detection of Acute Obstructive Respiratory Changes in Diving Students during Occupational Diving Training, Pneumologie, 1999, vol. 53, p. 219.

    PubMed  CAS  Google Scholar 

  6. Clark, J.M., Lambertsen, C.J., Gelfand, R., et al., Effects of Prolonged Oxygen Exposure at 1.5, 2.0, or 2.5 ATA on Pulmonary Function in Men (Predictive Studies V), J. Appl. Physiol., 1999, vol. 86, p. 243.

    PubMed  CAS  Google Scholar 

  7. Thorsen, E., Stgadal, K., Reed, J.W., et al., Contribution of Hyperoxia to Reduced Pulmonary Function after Deep Saturation, J. Appl. Physiol., 1993, vol. 75, p. 657.

    PubMed  CAS  Google Scholar 

  8. Smolin, V.V., Sokolov, G.M., and Pavlov, B.N., Vodolaznye spuski i ikh meditsinskoe obespechenie (Dives and Their Medical Support), Moscow: Slovo, 2001.

    Google Scholar 

  9. Shykoff, B., Pulmonary Effects of Submerged Oxygen Breathing: 4-, 6-, and 8-Hour Dives at 140 KPa, Undersea Hyperb. Med., 2005, vol. 32, no. 5, pp. 351–361.

    PubMed  CAS  Google Scholar 

  10. Pochekutova, I.A., Korenbaum, V.I., Kulakov, Yu.V., Avdeeva, E.V., and Tagil’tsev, A.A., Significance of Spectral and Time Parameters of Forced Expiratory Sound in Evaluating Bronchial Patency, Fiziol. Chel., 2001, vol. 27, no. 4, p. 441 [Human Physiol. (Engl. Transl.), 2001, vol. 27, no. 4, p. 441].

    Google Scholar 

  11. Pochekutova, I.A. and Korenbaum, V.I., Duration of Tracheal Sound Recorded during Forced Expiration: From a Model to Establishing Standards, Fiziol. Chel., 2007, vol. 33, no. 1, p. 70 [Human Physiol. (Engl. Transl.), 2007, vol. 33, no. 1, p. 59].

    CAS  Google Scholar 

  12. Pochekutova, I.A., Korenbaum, V.I., and Agapov, Ya.V., Acoustic and spirometric indices of external respiration function in divers using the oxygen closed type breathing apparatus, Voenno-Med. Zh. 2006, vol. 327, p. 58.

    CAS  Google Scholar 

  13. Korenbaum, V.I. and Pochekutova, I.A., Regression Simulation of the Dependence of Forced Expiratory Tracheal Noises Duration on Human Respiratory System Biomechanical Parameters, J. Biomechanics, 2008, vol. 41, p. 63.

    Article  Google Scholar 

  14. Korenbaum, V.I., Tagil’tsev, A.A., Kostiv, A.E., et al., Acoustic Equipment for Measuring Human Breath Noises, Prib. Tekh. Eksp., 2008, vol. 51, p. 143.

    Google Scholar 

  15. Quanjer, Ph.H., Tammeling, G.J., Cotes, J.E., et al., Lung Volumes and Forced Ventilatory Flows: Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal: Official Statement of the European Respiratory Society, Eur. Respir. J., 1993, vol. 6,suppl. 16, p. 5.

    Google Scholar 

  16. Mussell, M.J., Nakazono, Y., and Miyamoto, Y., Effect of Air Flow and Flow Transducer on Tracheal Breath Sounds, Med. Biol. Eng. Comput., 1990, vol. 28, p. 550.

    Article  PubMed  CAS  Google Scholar 

  17. Belovol, E.V., Pochekutova, I.A., and Korenbaum, V.I., Short-Term Reproducibility of the Forced Expiratory Tracheal Noises, in Sbornik trudov XVIII sessii Rossiiskogo akusticheskogo obshchestva (Proc. XVIII Session of Russian Acoustic Society), Moscow: GEOS, 2006.

    Google Scholar 

  18. Reed, J.W., Elliott, C., and Thorsen, E., Increased Lung Compliance in Response to a Moderate Hyperoxic Exposure, Undersea Hyperb. Med., 2001, vol. 28, p. 19.

    PubMed  CAS  Google Scholar 

  19. Bearden, S.E., Cheuvront, S.N., Ring, T.A., and Haymes, E.M., Oxidative Stress During a 3.5-Hour Exposure to 120 kPa(A) PO2 in Human Divers, Undersea Hyperb. Med., 1999, vol. 26, p. 159.

    PubMed  CAS  Google Scholar 

  20. Neubauer, B., Schotte, U., and Struck, N., et al., Leukotriene-B4 Concentrations in Breathing Condensate before and after Simulated Deep Dives, Undersea Hyperb. Med., 2004, vol. 31, p. 217.

    PubMed  CAS  Google Scholar 

  21. Carpagnano, G.E., Kharitonov, S.A., Foschino-Barbaro, M.P., et al., Supplementary Oxygen in Healthy Subjects and Those with COPD Increases Oxidative Stress and Airway Inflammation, Thorax, 2004, vol. 59, p. 1016.

    Article  PubMed  CAS  Google Scholar 

  22. Neubauer, B., Mutzbauer, T.S., and Tetzlaff, K., Exposure to Soda-Lime Dust in Closed and Semi-Closed Diving Apparatus, Aviat. Space. Environ. Med., 2000, vol. 71, p. 1248.

    PubMed  CAS  Google Scholar 

  23. Korenbaum, V.I. and Pochekutova, I.A., Analysis of the Human Forced Expiratory Tracheal Noises According to Clinical Experimental Data, Akust. Zh., 2004, vol. 50, p. 676.

    Google Scholar 

  24. Burger, E.J. and Mead, J., Static Properties of Lungs after Oxygen Exposure, J. Appl. Physiol., 1969, vol. 27, p. 191.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.A. Pochekutova, V.I. Korenbaum, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 3, pp. 76–82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pochekutova, I.A., Korenbaum, V.I. Acoustic estimation of the impact of a single dive using a closed-type breathing apparatus on the ventilatory function of the human lungs. Hum Physiol 37, 334–338 (2011). https://doi.org/10.1134/S0362119711020162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711020162

Keywords

Navigation