Skip to main content
Log in

Age-related changes in the spatiotemporal structure of simple cyclical graphic movements performed at the maximal rate: I. The increase in the movement rate is accounted for by reduction of the number of submovements in a movement cycle

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Right-handed subjects from four age groups, including children aged 5–6, 8–9, and 11–12 years and adults, performed simple cyclical graphic movements of different degrees of coordination and serial complexity at the maximum possible rate with the right and left hands holding the stylus either with their fingers or in the fist. The period of the cyclical movement decreased with age, the decrease depending on which hand (the right or the left) was used and how the stylus was held. The frequency of submovements only slightly depended on the age, was the same for the right and left hands, but did not depend on the type of movement or the way of holding the stylus. The age-related increase in the maximal rate of graphic movements may have been almost entirely accounted for by a decrease in the number of submovements constituting the movement cycle. The results are discussed in terms of the notion of submovements as “elementary units” of graphic movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viviani, P. and Schneider, R., A Developmental Study of the Relationship Between Geometry and Kinematics in Drawing Movements, J. Exp. Psychol. Human Percept. Perform., 1991, vol. 17, no. 1, p. 198.

    Article  CAS  Google Scholar 

  2. Giudice, E.D., Grossi, D., Angelini, R., et al., Spatial Cognition in Children. I. Development of Drawing-Related (Visuospatial and Constructional) Abilities in Preschool and Early School Years, Brain Dev., 2000, vol. 22, p. 362.

    Article  PubMed  Google Scholar 

  3. Bezrukikh, M.M., Psychophysiological Mechanisms of Writing Difficulties in Schoolchildren, Fiziol. Chel., 2005, vol. 31, no. 5, p. 52 [Human Physiol. (Engl. Transl.), vol. 31, no. 5, p. 539].

    CAS  Google Scholar 

  4. Bo, J., Bastian, A.J., Contreras-Vidal, J.L., et al., Continuous and Discontinuous Drawing: High Temporal Variability Exists Only in Discontinuous Circling in Young Children, J. Mot. Behav., 2008, vol. 40, no. 5, p. 391.

    Article  PubMed  Google Scholar 

  5. Bourgeois, F. and Hay, L., Information Processing and Movement Optimization during Development: Kinematics of Cyclical Pointing in 5- to 11-Year-Old Children, J. Mot. Behav., 2003, vol. 35, no. 2, p. 183.

    Article  PubMed  Google Scholar 

  6. Smits-Engelsman, B.C.M., Van Galen, G.P., and Duysens, J., The Breakdown of Fitts’ Law in Rapid, Reciprocal Aiming Movements, Exp. Brain Res., 2002, vol. 145, p. 222.

    Article  CAS  PubMed  Google Scholar 

  7. Yan, J.H., Stelmach, G.E., Thomas, J.R., and Thomas, K.T., Developmental Features of Rapid Aiming Arm Movements Across the Lifespan, J. Mot. Behav., 2000, vol. 32, no. 2, p. 121.

    Article  CAS  PubMed  Google Scholar 

  8. Doeringer, J.A. and Hogan, N., Serial Processing in Human Movement Production, Neur. Networks, 1998, vol. 11, p. 1345.

    Article  Google Scholar 

  9. Doeringer, J.A. and Hogan, N., Intermittency in Preplanned Elbow Movements Persists in the Absence of Visual Feedback, J. Neurophysiol., 1998, vol. 80, p. 1787.

    CAS  PubMed  Google Scholar 

  10. Gross, J., Timmermann, L., Kujala, J., et al., The Neural Basis of Intermittent Motor Control in Humans, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 4, p. 2299.

    Article  CAS  PubMed  Google Scholar 

  11. Rohrer, B., Fasoli, S., Krebs, H.I., et al., Movement Smoothness Changes during Stroke Recovery, J. Neuroscience, 2002, vol. 22, no. 18, p. 8297.

    CAS  Google Scholar 

  12. Dounskaia, N., Van Gemmert, A.W.A., and Stelmach, G.E., Interjoint Coordination during Handwriting-Like Movements, Exp. Brain Res., 2000, vol. 135, p. 127.

    Article  CAS  PubMed  Google Scholar 

  13. Hamming, R.W., Tsifrovye fil’try (Digital Filters), Moscow: Sovetskoe Radio, 1980.

    Google Scholar 

  14. Meulenbroek, R.G.J., Vinter, A., and Desbiez, D., Exploitation of Elasticity in Copying Geometrical Patterns: The Role of Age, Movement Amplitude, and Limb-Segment Involvement, Acta Psychol., 1998, vol. 99, p. 329.

    Article  CAS  Google Scholar 

  15. Adam, A., De Luca, C.J., and Erim, Z., Hand Dominance and Motor Unit Firing Behavior, J. Neurophysiol., 1998, vol. 80, p. 1373.

    CAS  PubMed  Google Scholar 

  16. Goble, D.J. and Brown, S.H., Upper Limb Asymmetries in the Matching of Proprioceptive Versus Visual Targets, J. Neurophysiol., 2008, vol. 99, p. 3063.

    Article  PubMed  Google Scholar 

  17. Mottet, D. and Bootsma, R.J., The Dynamics of Goal-Directed Rhythmical Aiming, Biol. Cybern., 1999, vol. 80, p. 235.

    Article  CAS  PubMed  Google Scholar 

  18. Heuer, H. and Schulna, R., Phasing of Muscle Activity during Rapid Finger Oscillations, J. Mot. Behav., 2002, vol. 34, no. 3, p. 277.

    Article  PubMed  Google Scholar 

  19. Bernstein, N.A., Ocherki po fiziologii dvizhenii i fiziologii aktivnosti (Notes on the Physiology of Movements and Physiology of Activity), Moscow: Meditsina, 1966.

    Google Scholar 

  20. Meyer, D.E., Abrams, R.A., Kornblum, S., et al., Optimality in Human Motor Performance: Ideal Control of Rapid Aimed Movements, Psychol. Rev., 1988, vol. 95, p. 340.

    Article  CAS  PubMed  Google Scholar 

  21. Hay, L. and Redon, C., The Control of Goal-Directed Movements in Children: Role of Proprioceptive Muscle Afferents, Human Movement Sci., 1997, vol. 16, p. 433.

    Article  Google Scholar 

  22. Hogan, N. and Sternad, D., On Rhythmic and Discrete Movements: Reflections, Definitions and Implications for Motor Control, Exp. Brain Res., 2007, vol. 181, p. 13.

    Article  PubMed  Google Scholar 

  23. Guiard, Y., On Fitts’ and Hooke’s Laws: Simple Harmonic Movement in Upper-Limb Cyclic Aiming, Acta Psychol., 1993, vol. 82, p. 139.

    Article  CAS  Google Scholar 

  24. Guiard, Y., Fitts’ Law in the Discrete Vs. Cyclical Paradigm, Human Movement Sci., 1997, vol. 16, p. 97.

    Article  Google Scholar 

  25. Wessberg, J. and Kakuda, N., Single Motor Unit Activity in Relation to Pulsatile Motor Output in Human Finger Movements, J. Physiol., 1999, vol. 517, no. 1, p. 273.

    Article  CAS  PubMed  Google Scholar 

  26. Muller, K. and Homberg, V., Development of Speed of Repetitive Movements in Children Is Determined by Structural Changes in Corticospinal Efferents, Neurosci. Lett., 1992, vol. 144, p. 57.

    Article  CAS  PubMed  Google Scholar 

  27. Heinen, F., Fietzek, U.M., Berweck, S., et al., Fast Corticospinal System and Motor Performance in Children: Conduction Proceeds Skill, Pediatric Neurol., 1998, vol. 19, no. 3, p. 217.

    Article  CAS  Google Scholar 

  28. Bäckman, E. and Henriksson, K.G., Skeletal Muscle Characteristics in Children 9–15 Years Old: Force, Relaxation Rate and Contraction Time, Clin. Physiol., 1988, vol. 8, no. 5, p. 521.

    Article  PubMed  Google Scholar 

  29. Grosset, J.-F., Mora, I., Lambertz, D., and Perot, C., Age-Related Changes in Twitch Properties of Plantar Flexor Muscles in Prepubertal Children, Ped. Res., 2005, vol. 58, no. 5, p. 966.

    Article  Google Scholar 

  30. Smits-Engelsman, B.C.M., Westenberg, Y., and Duysens, J., Development of Isometric Force and Force Control in Children, Cogn. Brain Res., 2003, vol. 17, p. 68.

    Article  CAS  Google Scholar 

  31. Hamilton, A.F., De C., Jones K.E., Wolpert D.M. The Scaling of Motor Noise with Muscle Strength and Motor Unit Number in Humans, Exp. Brain Res., 2004, vol. 157, p. 417.

    Article  PubMed  Google Scholar 

  32. Bezrukikh, M.M., Age-Related Changes in Voluntary Movement Control, in Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka (Brain Development and the Formation of Cognitive Activity in Children), Farber, D.A. and Bezrukikh, M.M., Eds., Moscow, 2009.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Kurgansky, M.E. Kurgansky, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 1, pp. 26–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurgansky, A.V., Kurgansky, M.E. Age-related changes in the spatiotemporal structure of simple cyclical graphic movements performed at the maximal rate: I. The increase in the movement rate is accounted for by reduction of the number of submovements in a movement cycle. Hum Physiol 37, 22–30 (2011). https://doi.org/10.1134/S0362119711010105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711010105

Keywords

Navigation