Skip to main content
Log in

The auditory aftereffects of radial sound source motion with different velocities

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Auditory aftereffects were evaluated after short adaptation to radial sound source motion with different velocities. Approach and withdrawal of the sound source were simulated by means of rhythmical noise (from 20 Hz to 20 kHz) impulse sequences with an arising or diminishing amplitude. They were presented to an anechoic chamber through two loudspeakers placed at 1.1 and 4.5 m from the listener. The adapting stimulus velocities were 0.68, 3.43, 6.92, and 9.97 m/s with an adaptation duration of 5 s. At all motion velocities, the aftereffect manifested itself in divergence of psychometric functions upon approaching and withdrawing of adaptors. The direction of function displacements was opposite to that of the adaptor motion. Three parameters reflecting alteration of perception after motion adaptation were determined and compared with control data: the evaluation of stationary test stimuli; the velocity of moving test signal at the point of subjective equality (perceptually unmoving point); and the percentage of responses after averaging over all test signals. These parameters of auditory radial motion aftereffect similarly changed with the adaptor velocity. They demonstrated a significant effect at slow motion (0.68 and 3.43 m/s) and a small effect at a quick motion (6.92 and 9.97 m/s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehrenstein, W.H., Direction-Specific Acoustical Aftereffects, J. Acoust. Soc. Am., 1978, vol. 64, suppl. 1, p. 35.

    Article  Google Scholar 

  2. Grantham, D.W. and Wightman, F.L., Auditory Motion Aftereffects, Percept. Psychophys., 1979, vol. 26, p. 403.

    Article  CAS  PubMed  Google Scholar 

  3. Grantham, D.W., Auditory Motion Aftereffects in the Horizontal Plane: the Effects of the Spectral Region, Spatial Sector and Spatial Richness, Acta Acustica, 1998, vol. 84, p. 337.

    Google Scholar 

  4. Neelon, M.F. and Jenison, R.L., The Effect of Trajectory on the Auditory Motion Aftereffect, Hearing Res., 2003, vol. 180, p. 57.

    Article  Google Scholar 

  5. Neelon, M.F. and Jenison, R.L., The Temporal Growth and Decay of the Auditory Motion Aftereffect, J. Acoust. Soc. Am., 2004, vol. 115, no. 6, p. 3112.

    Article  PubMed  Google Scholar 

  6. Deas, R.W., Roach, N.W., and McGraw, P.V., Distortions of Perceived Auditory and Visual Space Following Adaptation to Motion, Exp. Brain Res., 2008, vol. 191, p. 473.

    Article  PubMed  Google Scholar 

  7. Grantham, D.W., Motion Aftereffects with Horizontally Moving Sound Sources in the Free Field, Percept. Psychophys., 1989, vol. 45, no. 2, p. 129.

    Article  CAS  PubMed  Google Scholar 

  8. Dong, C.J., Swindale, N.V., Zakarauskas, P., et al., The Auditory Motion Aftereffect: Its Tuning and Specificity in the Spatial and Frequency Domains, Percept. Psychophys., 2000, vol. 62, p. 1099.

    Article  CAS  PubMed  Google Scholar 

  9. Shu, Z.J., Swindale, N.V., and Cynader, M.S., Spectral Motion Produces an Auditory After-Effect, Nature, 1993, vol. 364, p. 721.

    Article  CAS  PubMed  Google Scholar 

  10. Andreeva, I.G. and Malinina, E.S., Auditory Motion Aftereffects of Approaching and Withdrawing Sound Sources, Fiziol. Chel., 2010, vol. 36, no. 3, p. 48 [Human Physiol. (Engl. Transl.), vol. 36, no. 3, p. 290].

    CAS  Google Scholar 

  11. Grantham, D.W., Detection and Discrimination of Simulated Motion of Auditory Targets in the Horizontal Plane, J. Acoust. Soc. Am., 1986, vol. 79, p. 1939.

    Article  CAS  PubMed  Google Scholar 

  12. Grantham, D.W, Auditory Motion Perception: Snapshots Revisited, in Binaural and Spatial Hearing in Real and Virtual Environments, Gilkey, R.H. and Anderson, T.R., Eds., Lawrence Eribaum Associates, 1997, p. 295.

  13. Altman, J.A., Are There Neurons Detecting Direction of Sound Source Motion?, Exp. Neurol., 1968, vol. 22, p. 13.

    Article  CAS  PubMed  Google Scholar 

  14. Al’tman, Ya.A., Lokalizatsiya dvizhushchegosya istochnika zvuka (Localization of Moving Sound Sources), Leningrad: Nauka, 1983.

    Google Scholar 

  15. Warren, J.D., Zielinski, B.A., Green, G.G.R., et al., Perception of Sound-Source Motion by the Human Brain, Neuron, 2002, vol. 34, p. 139.

    Article  CAS  PubMed  Google Scholar 

  16. Altman, J.A., Syka, J., and Schmigidina, G.N., Neuronal Activity in the Medial Geniculate Body of the Cat during Monaural and Binaural Stimulation, Exp. Brain Res., 1970, vol. 10, p. 81.

    Article  CAS  PubMed  Google Scholar 

  17. Ahissar, M., Ahissar, E., Bergman, H., and Vaadia, E., Encoding of Sound Source Location and Movement: Activity of Single Neurons and Interactions between Adjacent Neurons in the Monkey Auditory Cortex, J. Neurophysiol., 1992, vol. 67, p. 203.

    CAS  PubMed  Google Scholar 

  18. Jenison, R.L., Schnupp, J.W.H., Reale, R.A., and Brugge, J.F., Auditory Space-Time Receptive Field Dynamics Revealed by Spherical White-Noise Analysis, J. Neurosci., 2001, vol. 21, no. 12, p. 4408.

    CAS  PubMed  Google Scholar 

  19. Altman, Ja.A. and Andreeva, I.G., Monaural and Binaural Perception of Approaching and Withdrawing Auditory Images in Human, J. Audiol., 2004, vol. 43, no. 4, p. 227.

    Article  Google Scholar 

  20. Elliott, L.L., Backward Masking: Monotic and Dichotic Conditions, J. Acoust. Soc. Am., 1962, vol. 34, p. 1108.

    Article  Google Scholar 

  21. Rawdon-Smith, A.F. and Gridley, G.C., An Illusion in Perception of Loudness, Brit. J. Psychol., 1935, vol. 26, p. 191.

    Google Scholar 

  22. Small, A.M., Loudness Perception of Signals of Monotonically Changing Sound Level, J. Acoust. Soc. Am., 1977, vol. 61, p. 1293.

    Article  PubMed  Google Scholar 

  23. Arlinger, S.D. and Jervall, L.B., Results of Psychoacoustic and Cortical Evoked Potential Experiments Using Frequency and Amplitude Modulated Stimuli, Scandinavian Audiol., 1979, Suppl. 9, p. 229.

  24. Reinhardt-Rutland, A.H., Increasing- and Decreasing - Loudness Aftereffect: Asymmetrical Functions for Absolute Rate of Sound Level Change in Adapting Stimulus, J. General Psychol., 1995, vol. 122, no. 2, p. 187.

    Article  CAS  Google Scholar 

  25. Gersuni, G.V and Vartanian, I.A, Time Dependent Features of Adequate Sound Stimuli and the Functional Organization of Central Auditory Neurons, in Basic Mechanisms in Hearing, Moller, A.R., Ed., Acad. Press, N.Y., 1973, p. 623.

    Google Scholar 

  26. Vartanyan, I.A., Slukhovoi analiz slozhnykh zvukov. Elektrofiziologicheskoe issledovanie (Auditory Analysis of Complex Sounds. Electrophysiological Study), Moscow: Nauka, 1978.

    Google Scholar 

  27. Nikitin, N.I., Auditory Analysis of Stationary and Moving Sound Signals: Electrophysiological and Psychophysiological Characteristics, Extended Abstract of Cand. Sci. (Med.) Dissertation,: St. Petersburg State University, 2009

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.G. Andreeva, E.S. Malinina, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 1, pp. 75–84.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreeva, I.G., Malinina, E.S. The auditory aftereffects of radial sound source motion with different velocities. Hum Physiol 37, 66–74 (2011). https://doi.org/10.1134/S0362119711010026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711010026

Keywords

Navigation