Skip to main content
Log in

Development of the brain’s organization of working memory in young schoolchildren

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

In 7–8 and 9–10-years old children, we studied event-related potentials (ERPs) during paired comparison of non-verbalizable visuospatial stimuli presented at an interval of 1.5–1.8 s. Age-related differences were found in the involvement of various cortical areas in the formation and retention of a short-term memory trace of the reference stimulus and during comparison of the short-term trace with the test stimulus presented. In both age groups, working memory was associated with an elevation of the amplitude of the sensory-specific N1 component in the visual cortical areas. Age-related differences in the processing of sensory-specific characteristics of a stimulus were the greatest in the ERPs to the test stimulus: at the age of 9–10, the N1 component amplitude was significantly increased in all caudal leads and, in the occipital and inferior temporal leads, this component was preceded by P1 component. At this age, we observed the early involvement of the inferior frontal cortex, which was not observed at the age of seven. The increase in positivity over that area was observed in the interval of 100–200 ms. Substantial differences between age groups were found in the late ERP component corresponding to cognitive processes. At the age of 7–8, the presentation of both the reference and test stimuli causes the increase in the amplitude of the slow positive complex (SPC) in the caudal liads with the maximum enhancement found in the interval of 300–800 ms in the parietal leads. At the age of 9–10, the SPC increase, much like in adults, was observed in ERP to the test stimulus only. At this age, adult-like specific changes in the late phases of ERPs were observed in the fronto-central regions at the different stages of working memory. They are the increases in the negative N400 wave in the ERP to the reference stimulus and the SPC to the test stimulus. These data show that, at the age of 9–10, the functional organization of working memory of the adult type is formed; however, the extent to which the frontal cortex, and its dorsal regions in particular, is involved into working memory processes does not meet yet a definitive level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hitch, G.I., Woodin, M.E., and Baker, S., Visual and Phonological Components of Working Memory in Children, Memory Cognition, 1989, vol. 17, p. 175.

    Article  CAS  PubMed  Google Scholar 

  2. Longoni, A.M. and Scalisi, T.G., Developmental Aspects of Phonemic and Visual Similarity Effects: Further Evidence in Italian Children, Int. J. Behav. Dev., 1994, vol. 17, p. 57.

    Google Scholar 

  3. Miles, C., Morgan, M.J., Milne, A.B., and Morries, E.D., Developmental and individual Differences in Visual Memory Span, Curr. Psychol., 1996, vol. 15, p. 53.

    Article  Google Scholar 

  4. Swanson, L.H., What Develops in Working Memory? A Life Span Perspective, Dev. Psychol., 1999, vol. 35, p. 986.

    Article  CAS  PubMed  Google Scholar 

  5. Thomas, K.M., King, S.W., Franzen, R.L., et al., A Developmental Functional MRI Study of Spatial Working Memory, Neuroimage, 1999, vol. 10, p. 327.

    Article  CAS  PubMed  Google Scholar 

  6. Kemps, E., De Rammelaere, S., and Desmet, T. The Development of Working Memory: Exploring the Complementarity of Two Models, J. Exp. Child Psychol., 2000, vol. 77, no. 2, p. 89.

    Article  CAS  PubMed  Google Scholar 

  7. Diamond, A. The Early Development of Executive Functions, in Lifespan Cognition, Mechanisms of Change, Bialystok, E. and Craik, F., Eds., Oxford: Oxford Univ. Press, 2006, p. 70.

    Google Scholar 

  8. Cowan, N., Morey, C.C., Au Buchou, A.M., et al., Seven-Year-Old Allocation Attention Like Adults Unlike Working Memory Is Overloaded, Dev. Sci., 2010, vol. 13, no. 1, p. 1206.

    Article  Google Scholar 

  9. Pickiring, S., The Development of Visual-Spatial Working Memory, Memory, 2001, vol. 9, p. 423.

    Article  Google Scholar 

  10. Curtis, C.E. and D’Esposito, M., Persistent Activity in the Prefrontal Cortex during working Memory, Trends Cogn. Sci., 2003, vol. 7, p. 415.

    Article  PubMed  Google Scholar 

  11. Ruchkin, D.S., Grafman, J., Cameron, K., and Berndt, R.S., Working Memory Retention Systems: A State of Activated Long-Term Memory, Behav. Brain Sci., 2003, vol. 26, no. 6, p. 709.

    PubMed  Google Scholar 

  12. D’Esposito, M., From Cognitive to Neural Models of Working Memory, Philos. Trans. R. Soc. Lond., 2007, vol. 362, no. 1481, p. 761.

    Article  Google Scholar 

  13. Agam, Y., Hyun, J.S., Danker, J.F., et al., Early Neural Signatures of Visual Short-Term Memory, Neuroimage, 2009, vol. 44, no. 2, p. 531.

    Article  PubMed  Google Scholar 

  14. Farber, D.A., Development of Visual Perception in Ontogeny: Psychophysiological Analysis, Mir Psikhologii, 2003, no. 2, p. 114.

  15. Farber, D.A. and Beteleva, T.G., Formation of the System of Visual Perception in Ontogeny, Fiziol. Chel., 2005, vol. 31, no. 5, p. 26 [Human Physiol. (Engl. Transl.), vol. 31, no. 5, p. 515].

    CAS  Google Scholar 

  16. Machinskaya, R.I., Functional Maturation of the Brain and Formation of the Neurophysiological Mechanisms of Selective Voluntary Attention in Young Schoolchildren, Fiziol. Chel., 2006, vol. 32, no. 1, p. 26 [Human Physiol. (Engl. Transl.), vol. 32, no. 1, p. 20].

    Google Scholar 

  17. Razvitie mozga i formirovanie kognitivnoi deyatel’nosti rebenka (Development of the Brain and Formation of Cognitive Activity in a Child), Farber, D.A. and Bezrukikh, M.M., Eds., Moscow: Modek, 2009.

    Google Scholar 

  18. Nelson, C.A., Monk, C.S., Lin, J., et al., Functional Neuroanatomy of Spatial Working Memory in Children, Dev. Psychol., 2000, vol. 36, no. 1, p. 109.

    Article  CAS  PubMed  Google Scholar 

  19. Kwon, H., Reiss, A.L., and Menon, V., Neural Basis of Protracted Developmental Changes in Visuo-Spatial Working Memory, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 20, p. 13336.

    Article  CAS  PubMed  Google Scholar 

  20. Klingberg, T., Development of a Superior Frontal-Intraparietal Network for Visuo-Spatial Working Memory, Neuropsychologia, 2006, vol. 44, no. 11, p. 2171.

    Article  PubMed  Google Scholar 

  21. Beteleva, T.G. and Sinitsyn, S.V., Event-Related Potentials at Different Stages of the Operation of Visual Working Memory, Fiziol. Chel., 2008, vol. 34, no. 3, p. 5 [Human Physiol. (Engl. Transl.), vol. 34, no. 3, p. 265].

    CAS  Google Scholar 

  22. Farber, D.A. and Sinitsyn, S.V., Functional Organization of Working Memory in Seven- to Eight-Year-Old Children, Fiziol. Chel., 2009, vol. 35, no. 2, p. 5 [Human Physiol. (Engl. Transl.), vol. 35, no. 2, p. 131].

    Google Scholar 

  23. Beteleva, T.G., Sinitsyn, S.V., and Farber, D.A., Age-Related Specificity of the Processing of Visual Information in the System of Working Memory, Fiziol. Chel., 2009, vol. 35, no. 6, p. 25 [Human Physiol. (Engl. Transl.), vol. 35, no. 6, p. 672].

    CAS  Google Scholar 

  24. Vogel, E.K. and Luck, S.J., The visual N1 Component as an Index of a Discrimination Process, Psychophysiology, 2000, vol. 37, no. 2, p. 190.

    Article  CAS  PubMed  Google Scholar 

  25. Righart, R. and de Jelder, B., Cortex Influences Early Perceptual Analysis of Faces: An Electrophysiological Study, Cereb. Cortex, 2006, vol. 16, no. 9, p. 1249.

    Article  PubMed  Google Scholar 

  26. Hillyard, S.A. and Anllo-Vento, L., Event-Related Brain Potentials in the Study of Visual Selective Attention, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, p. 781.

    Article  CAS  PubMed  Google Scholar 

  27. Morgan, H.M., Klein, C., Boehm, S.G., et al., Working Memory Load for Faces Modulates D300, N170, and N250r, J. Cogn. Neurosci., 2008, vol. 20, no. 6, p. 989.

    Article  PubMed  Google Scholar 

  28. Miller, B.T., Deouell, L.Y., Dam, C., et al., Spatio-Temporal Dynamics of Neural Mechanisms Underlying Component Operations in Working Memory, Brain Res., 2008, vol. 1206, p.61.

    Article  CAS  PubMed  Google Scholar 

  29. Potts, G.F., Martin, L.E., Burston, Pn., and Montague, P.R., When Lings Are Better or Worse Than Expected: The Medial Frontal Cortex and the Allocation of Processing Resources, J. Cogn. Neurosci., 2006, vol. 18, no. 7, p. 1112.

    Article  PubMed  Google Scholar 

  30. Petrides, M., Lateral Prefrontal Cortex: Architectonic and Functional Organization, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2005, vol. 360, no. 1456, p. 781.

    Article  PubMed  Google Scholar 

  31. Farber, D.A., Beteleva, T.G., and Ignat’eva, I.S., Functional Organization of the Brain during the Operation of Working Memory, Fiziol. Chel., 2004, vol. 30, no. 2, p. 5 [Human Physiol. (Engl. Transl.), vol. 30, no. 2, p. 129].

    CAS  Google Scholar 

  32. Schendan, H.E. and Maher, S.M., Object Knowledge during Entry Level Categorization Is Activated and Modified by Implicit Memory after 200 ms, Neuroimage, 2008, vol. 44, p. 1423.

    Article  PubMed  Google Scholar 

  33. Donchin, E., Surprise! … Surprise?, Psychophysiology, 1981, vol. 18, no. 5, p. 493.

    Article  CAS  PubMed  Google Scholar 

  34. Fabiani, M., Karis, D., and Donchin, E., R300 and Recall in an Incidental Memory Paradigm, Psychophysiology, 1986, vol. 23, no. 3, p. 298.

    Article  CAS  PubMed  Google Scholar 

  35. Wagner, A., Shannon, B., Kahn, I., and Buckner, R., Parietal Lobe Contributions to Episodic Memory, Trends. Cogn. Sci., 2005, vol. 9, p. 445.

    Article  PubMed  Google Scholar 

  36. Vilberg, K.L. and Rugg, M.D., Memory Retrieval and the Parietal Cortex: A Review of Evidence from Event Related fMRI, Neuropsychologia, 2006, vol. 46, p. 1787.

    Article  Google Scholar 

  37. Kok, A., On the Utility of P3 Amplitude as a Measure of Processing Capacity, Psychophysiology, 2001, vol. 38, p. 557.

    Article  CAS  PubMed  Google Scholar 

  38. Bledowski, C., Prvulovic, D., Hoechstetter, K., et al., Localizing P300 Generators in Visual Target and Distractor Processing: A Combined Event-Related Potential and Functional Magnetic Resonance Imaging Study, J. Neurosci., 2004, vol. 24, p. 9353.

    Article  CAS  PubMed  Google Scholar 

  39. Bledowski, C., Kadosh, K.C., Wibral, M., et al., Mental Chronometry of Working Memory Retrieval: A Combined Functional Magnetic Resonance Imaging and Event-Related Potentials Approach, J. Neurosci., 2006, vol. 26, no. 3, p. 821.

    Article  CAS  PubMed  Google Scholar 

  40. Wolk, D., Schactez, D., Lygisos, M.N., et al., ERP Correlates of Recognition Memory: Effects of Retention Interval and False Alarms, Brain Res., 2006, vol. 96, p. 148.

    Article  Google Scholar 

  41. Cabeza, R., Ciaramelli, E., Olson, I.R., and Moscovitch, M., The Parietal Cortex and Episodic Memory: An Attentional Account, Nat. Rev. Neurosci., 2008, vol. 9, p. 613.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.A. Farber, T.G. Beteleva, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 1, pp. 5–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farber, D.A., Beteleva, T.G. Development of the brain’s organization of working memory in young schoolchildren. Hum Physiol 37, 1–13 (2011). https://doi.org/10.1134/S0362119710061015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119710061015

Keywords

Navigation