Skip to main content
Log in

Directed corticocortical functional connectivity at the early stages of serial learning in adults and seven- to eight-year-old children

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Serial learning at its earlier stages, presumably involving the working memory, was studied in adults and seven- to eight-year-old children during the reproduction of a sequence of discrete movements following the order specified by a sequence of visual stimuli. In both age groups, the learning curves (latent time vs. trial number) were qualitatively similar in shape. The overall shape of the learning curve depended on the relative proportion of the fast vs. slow phases of latent time reduction. Comparison of the corticocortical functional connectivity patterns in the prestimulus period in the sequence reproduction task vs. the simple visuomotor reaction task showed a general tendency of an increase in the influence of postcentral cortical areas accompanied by the reduced influence of prefrontal and central cortical areas. In particular, it was typical of adults to show an increase in the directed influence of temporo-parieto-occipital (TPO) cortical areas, while the children also showed an increase in the directed influence of the parietal cortex. Comparison of the subgroups with different shapes of learning curves in the prestimulus period has shown the difference in their patterns of directed functional connectivity. The results are discussed with a special emphasis on the role of the working memory retaining the internal representations of sequences being learned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rhodes, B.J., Bullock, D., Verwey, W.B., Averbeck, B.B., and Page, M.P.A., Learning and Production of Movement Sequences: Behavioral, Neurophysiological, and Modeling Perspectives, Hum. Mov. Sci., 2004, vol. 23, p. 699.

    Article  PubMed  Google Scholar 

  2. Eversheim, U. and Bock, O., Evidence for Processing Stages in Skill Acquisition: A Dual-Task Study, Learn. Mem., 2001, vol. 8, p. 183.

    Article  PubMed  CAS  Google Scholar 

  3. Liang, H. and Wang, H., Top-Down Anticipatory Control in Prefrontal Cortex, Theory in Biosciences, 2003, vol. 122, no. 1, p. 70.

    Google Scholar 

  4. Praamstra, P., Boutsen, L., and Humphreys, G.W., Frontoparietal Control of Spatial Attention and Motor Intention in Human EEG, J. Neurophysiol., 2005, vol. 94, p. 764.

    Article  PubMed  Google Scholar 

  5. Posner, M.I., Sheese, B.E., Odludas, Y., and Tang, Y., Analyzing and Shaping Human Attentional Networks, Neuron Networks, 2006, vol. 19, p. 1422.

    Article  Google Scholar 

  6. Averbeck, B.B., Chafee, M.V., Crowe, D.A., and Georgopoulos, A.P., Parallel Processing of Serial Movements in Prefrontal Cortex, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 20, p. 13172.

    Article  PubMed  CAS  Google Scholar 

  7. Curtis, C.E. and D’Esposito, M., Persistent Activity in the Prefrontal Cortex during Working Memory, Trends in Cognitive Sciences, 2003, vol. 7, no. 9, p. 415.

    Article  PubMed  Google Scholar 

  8. Averbeck, B.B. and Lee, D., Prefrontal Neural Correlates of Memory for Sequences, J. of Neuroscience, 2007, vol. 28, no. 9, p. 2204.

    Article  CAS  Google Scholar 

  9. Amiez, C. and Petrides, M., Selective Involvement of the Mid-Dorsolateral Prefrontal Cortex in the Coding of the Serial Order of Visual Stimuli in Working Memory, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 34, p. 13786.

    Article  PubMed  CAS  Google Scholar 

  10. Ward, L.M., Synchronous Neural Oscillations and Cognitive Processes, Trends in Cog. Sci., 2003, vol. 7, no. 12, p. 553.

    Article  Google Scholar 

  11. Sauseng, P. and Klimesch, W., What Does Phase Information of Oscillatory Brain Activity Tell Us About Cognitive Processes?, Neurosci. Biobehav. Rev., 2008, vol. 32, no. 5, p. 1001.

    Article  PubMed  Google Scholar 

  12. Savion-Lemieux, T., Bailey, J.A., and Penhune, V.B., Developmental Contributions to Motor Sequence Learning, Exp. Brain Res., 2009, vol. 195, no. 2, p. 293.

    Article  PubMed  Google Scholar 

  13. Kurganskii, A.V. and Grigal, P.P., Performance of a series of movements specified by the sequence of sensory signals. Individual Differences in the Character of the Initial Stage of Serial Learning, Zh. Vyssh. Nervnoy Deyat., 2009, vol. 59, no. 6, p. 673.

    CAS  Google Scholar 

  14. Kaminski, M., Ding, M., Truccolo, W.A., and Bressler, S.L., Evaluating Causal Relations in Neural Systems: Granger Causality, Direct Transfer Function and Statistical Assessment of Significance, Biol. Cybern., 2001, vol. 85, p. 145.

    Article  PubMed  CAS  Google Scholar 

  15. Kaminski, M., Determination of Transmission Patterns in Multichannel Data, Philos. Trans. R. Soc. London B., 2005, vol. 360, p. 947.

    Article  Google Scholar 

  16. Marple, S.L., Jr., Tsifrovoy spektral’ny analiz i ego prilozheniya (Digital Spectral Analysis with Applications), Moscow: Mir, 1990.

    Google Scholar 

  17. Cui, J., Xu, L., Bressler, S.L., Ding, M., and Liang, H., BSMART: A Matlab/C Toolbox for Analysis of Multichannel Neural Time Series, Neuron Networks, 2008, vol. 21, p. 1094.

    Article  Google Scholar 

  18. Ding, M., Bressler, S.L., Yang, W., and Liang, H., Short-Window Spectral Analysis of Cortical Event-Related Potentials by Adaptive Multivariate Autoregressive Modeling: Data Preprocessing, Model Validation, and Variability Assessment, Biol. Cybern., 2000, vol. 83, p. 35.

    Article  PubMed  CAS  Google Scholar 

  19. Nichols, T.E. and Holmes, A.P., Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples, Hum. Brain Mapp., 2001, vol. 15, p. 1.

    Article  Google Scholar 

  20. White, L.E., Andrews, T.J., Hulette, C., Richards, A., Groelle, M., Paydarfar, J., and Purves, D., Structure of the Human Sensorimotor System. I: Morphology and Cytoarchitecture of the Central Sulcus, Cerebral Cortex, 1997, vol. 7, p. 1047.

    Google Scholar 

  21. Srinivasan, R., Winter, W.R., and Nunez, P.L., Source Analysis of EEG Oscillations Using High-Resolution EEG and MEG, Prog. Brain Res., 2006, vol. 159, p. 29.

    Article  PubMed  Google Scholar 

  22. Edin, F., Klingberg, T., Stodberg, T., and Tegner, J., Fronto-Parietal Connection Asymmetry Regulates Working Memory Distractibility, J. of Integrative Neuroscience, 2007, vol. 6, no. 4, p. 567.

    Article  Google Scholar 

  23. Babiloni, F., Cincotti, F., Basilisco, A., Maso, E., Bufano, M., Babiloni, C., Carducci, F., Rossini, P., Cerutti, S., and Rubin, D.B.D., Frontoparietal Cortical Networks Revealed by Structural Equation Modeling and High Resolution EEG during a Short Term Memory Task, in First International IEEE EMBS Conference on Neural Engineering: Conference Proceedings, 2003, p. 79.

  24. Ungerleider, L.G. and Pessoa, L., What and Where Pathways, Scholarpedia, 2008, vol. 3, no. 11, p. 5342.

    Article  Google Scholar 

  25. Harrison, T.B. and Stiles, J., Hierarchical Forms Processing in Adults and Children, J. of Exp. Child Psychol., 2009, vol. 103, no. 2, p. 222.

    Article  Google Scholar 

  26. Kus, R., Blinowska, K.J., Kaminski, M., and Basinska-Starzycka, A., Propagation of EEG Activity during Continuous Attention Test, Bull. Pol. Ac.: Tech., 2005, vol. 53, no. 3, p. 217.

    Google Scholar 

  27. Grent-’t-Jong, T. and Woldorff, M.G., Timing and sequence of brain activity in top-down control of visualspatial attention, PLoS Biol., 2007, vol. 5, no. 1, p. e12.

    Article  PubMed  CAS  Google Scholar 

  28. Green, J.J. and McDonald, J.J., Electrical Neuroimaging Reveals Timing of Attentional Control Activity in Human Brain, PLoS Biol., 2008, vol. 6, no. 4, p. e81.

    Article  CAS  Google Scholar 

  29. Grafton, S.T., Hazeltine, E., and Ivry, R.B., Abstract and Effector-Specific Representations of Motor Sequences Identified with PET, J. Neurosci., 1998, vol. 18, no. 22, p. 9420.

    PubMed  CAS  Google Scholar 

  30. Korman, M., Raz, N., Flash, T., and Karni, A., Multiple Shifts in the Representation of a Motor Sequence during the Acquisition of Skilled Performance, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no. 21, p. 12 492.

    Article  CAS  Google Scholar 

  31. Bapi, R.S., Miyapuram, K.P., Graydon, F.X., and Doya, K., FMRI Investigation of Cortical and Subcortical Networks in the Learning of Abstract and Effector-Specific Representations of Motor Sequences, Neuroimage, 2006, vol. 32, no. 2, p. 714.

    Article  PubMed  Google Scholar 

  32. Dennis, N.A., Howard, J.H., Jr., and Howard, D.V., Implicit Sequence Learning without Motor Sequencing in Young and Old Adults, Exp. Brain Res., 2006, vol. 175, no. 1, p. 153.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Kurgansky, P.P. Grigal, 2010, published in Fiziologiya Cheloveka, 2010, Vol. 36, No. 4, pp. 44–56.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurgansky, A.V., Grigal, P.P. Directed corticocortical functional connectivity at the early stages of serial learning in adults and seven- to eight-year-old children. Hum Physiol 36, 408–419 (2010). https://doi.org/10.1134/S0362119710040055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119710040055

Key words

Navigation