Skip to main content
Log in

Sluggishness of auditory perception during localization of short moving sound images

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

During localization of a moving sound source, a shift of the perceived position relative to the actual one of the starting point is an expression of the perception of sluggishness of the auditory system. In this study, the human ability to localize starting points during a gradual or abrupt movement of fused auditory images (FAIs) was compared with the ability to localize the position of a stationary sound image. Sound images moved from the midline of the head in the direction of each of the ears. The subject’s responses were recorded using a graphics table. There was a tendency to shift the starting point of the trajectory in the direction of the movement. This tendency was stronger for gradual rather than for abrupt FAI movement and for shorter stimuli (100 ms) than for long ones (200 ms). The value of the starting point’s displacement depended on the final interaural time delay. The results obtained are discussed in terms of the “snapshots” and “movement detector” theories, as well as in terms of the sluggish and anticipatory ability of auditory perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al’tman, Ya.A., Inertial Processes in the Auditory System during Localization of the Moving Sound Sources, Zhurn. Vyssh. Nervn. Deyat., 2008, vol. 58, no. 3, p. 309.

    Google Scholar 

  2. Grantham, D.W., Detection and Discrimination of Simulated Motion of Auditory Targets in the Horizontal Plane, J. Acoust. Soc. Am., 1986, vol. 79, p. 1939.

    Article  PubMed  CAS  Google Scholar 

  3. Perrott, D.R. and Musicant, A., Minimum Audible Movement Angle: Binaural Localization of Moving Sound Sources, J. Acoust. Soc. Am., 1977, vol. 62, p. 1463.

    Article  PubMed  CAS  Google Scholar 

  4. Al’tman, Ya.A., Varyagina, O.V., and Radionova, E.A., Manifestation of Cerebral Functional Asymmetry in Lateralization of a Moving Sound Image, Fiziologiya Cheloveka, 1998, vol. 24, no. 5, p. 48 [Hum. Physiol. (Engl. Transl.), 1998, vol. 24, no. 5, p. 560].

    Google Scholar 

  5. Altman, J.A., Variagina, O.V., Nikitin, N.I., and Radionova, E.A., Lateralization of a Moving Auditory Image: Interaction of Interaural Time and Intensity Differences, J. Acoust. Soc. Am., 1999, vol. 105, no. 1, p. 366.

    Article  PubMed  CAS  Google Scholar 

  6. Varyagina, O.V. and Radionova, E.A., The Equivalent Ratio and Comparative Effectiveness of Interaural Differences in Time and Intensity of Stimulation during Lateralization of a Moving Sound Image, Sens. Sist., 2001, vol. 15, p. 289.

    Google Scholar 

  7. Radionova, E.A., Functional Asymmetry and Assessing by a Person of the Motion Path of a Fused Sound Image, Zh. Evol. Biokhim. Fiziol., 2003, vol. 39, no. 1, p. 69.

    PubMed  CAS  Google Scholar 

  8. Varyagina, O.V. and Radionova, E.A., Individual Differences in Lateralization by a Person of the Stationary and Moving Sound Images (Virtual Reality: Particular Manifestation), Zh. Evol. Biokhim. Fiziol., 2004, vol. 40, no. 5, p. 441.

    Google Scholar 

  9. Varyagina, O.V., Subjective Estimation of the Trajectory Length of Fused Auditory Image Movement, Fiziologiya Cheloveka, 2005, vol. 31, no. 3, p. 32. [Hum. Physiol. (Eng. Transl.) 2005, vol. 31, no. 3, p. 269].

    Google Scholar 

  10. Getzmann, S., Lewald, J., and Guski, R., Representational Momentum in Spatial Hearing, Perception, 2004 vol. 33, no. 5, p. 591.

    Article  PubMed  Google Scholar 

  11. Getzmann, S., Representational Momentum in Spatial Hearing Does Not Depend on Eye Movements, Exp. Brain Res., 2005, vol. 165, no. 2, p. 229.

    Article  PubMed  Google Scholar 

  12. Getzmann, S., Shifting the Onset of a Moving Sound Source: A Froelich Effect in Spatial Hearing, Hear Res., 2005, vol. 210, nos. 1–2, p. 104

    Article  PubMed  Google Scholar 

  13. Getzmann, S. and Lewald, J., Localization of Moving Sound, Percept. Psychophys., 2007, vol. 69, no. 6, p. 1022.

    PubMed  Google Scholar 

  14. Al’tman, Ya.A., Lokalizatsiya dvizhushchegosya istochnika zvuka (Localization of a Moving Sound Source), Leningrad: Nauka, 1983.

    Google Scholar 

  15. Middlebrooks, J.C. and Green, D.M., Sound Localization by Human Listeners, Annu. Rev. Psychol., 1991, vol. 42, p. 135.

    Article  PubMed  CAS  Google Scholar 

  16. Sabery, K. and Perrott, D.R., Lateralization Thresholds Obtained under Conditions in Which the Precedence Effect Is Assumed to Operate, J. Acoust. Soc. Am., 1990, vol. 87, no. 4, p. 1732.

    Article  Google Scholar 

  17. Strybel, T.Z., Witty, A.M., and Perrott, D.R., Auditory Apparent Motion in the Free Field: the Effects of Stimulus Duration and Separation, Percept. Psychophys., 1992, vol. 52, no. 2, p. 139.

    PubMed  CAS  Google Scholar 

  18. Paavilainen, P., Karlsson, M.L., Reinikainen, K., and Näätänen, R., Mismatch Negativity to Change in Spatial Location of an Auditory Stimulus, Electroenceph. Clin. Neurophysiol., 1989, vol. 73, p. 129.

    Article  PubMed  CAS  Google Scholar 

  19. Schröger, E., Interaural Time and Level Differences: Integrated or Separated Processing?, Hear. Res., 1996, vol. 96, p. 191.

    Article  PubMed  Google Scholar 

  20. Nager, W., Kohlmetz, C., Joppich, G., Möbes, J., and Münte, T.F., Tracking of Multiple Sound Sources Defined by Interaural time Differences: Brain Potential Evidence in Humans. Neurosci. Lett., 2003, vol. 344, p. 181.

    Article  PubMed  CAS  Google Scholar 

  21. Deouell, L., Parnes, A., Pickard, N., and Knight, R., Spatial Location is Accurately Tracked by Human Auditory Sensory Memory: Evidence from the Mismatch Negativity, Eur. J. Neurosci., 2006, vol. 24, p. 1488.

    Article  PubMed  Google Scholar 

  22. Pakarinen, S., Takegata, R., Rinne, T., Huotilainen, M., and Näätänen, R., Measurement of Extensive Auditory Discrimination Profiles Using the Mismatch Negativity (MMN) of the Auditory Event-Related Potential (ERP), Clin. Neurophysiol., 2007, vol. 118, p. 177.

    Article  PubMed  Google Scholar 

  23. Al’tman, Ya.A., Vaitulevich, S.F., Varfolomeev, A.L., Petropavlovskaya, E.A., and Shestopalova, L.B., Mismatch Negativity as a Characteristic of the Distinguishing Locating Capacity of the Human Auditory System, Fiziologiya Cheloveka, 2007, vol. 33, no. 5, p. 22 [Hum. Physiol. (Eng. Transl.) 2007, vol. 33, no. 5, p. 531].

    Google Scholar 

  24. Shestopalova, L.B., Vaitulevich, S.F., Varfolomeev, A.L., and Petropavlovskaya, E.A., Mismatch Negativity in the Evoked Auditory Potentials at Smooth and Abrupt Movement of the Virtual Sound Source, Ross. Fiziol. Zh. im. Sechenova, 2007, vol. 93, no. 7, p. 777.

    CAS  Google Scholar 

  25. Petropavlovskaya, E.A. and Al’tman, Ya.A., Change in Auditory Image Movement Trajectories under Conditions of Direct Nonsimultaneous Masking, Fiziologiya Cheloveka, 2002, vol. 28, no. 5, p. 48 [Hum. Physiol., (Eng. Transl.), 2002, vol. 28, no. 5, p. 538].

    Google Scholar 

  26. Grantham, D.W., Auditory Motion Perception: Snapshot Revisited, in Binaural and Spatial Hearing in Real and Virtual Environments, Gilkey, R.H. and Anderson, T.R., Eds., New Jersey, 1997, p. 295.

  27. Altman, J.A., Are There Neurons Detecting Direction of Sound Source Motion?, Exp. Neurol., 1968, vol. 22, no. 1, p. 13.

    Article  PubMed  CAS  Google Scholar 

  28. Perrott, D.R. and Strybel, T.Z., Some Observations Regarding Motion without Direction, in Binaural and Spatial Hearing in Real and Virtual Environments, Gilkey, R.H. and Anderson, T.R, Eds., New Jersey, 1997, p. 275.

  29. Sabery, K. and Hafter, E.R., Experiments on Auditory Motion, in Binaural and Spatial Hearing in Real and Virtual Environments, Gilkey, R.H. and Anderson, T.R., Eds., New Jersey, 1997, p. 315.

  30. Viskov, O.V., On the Perception of Movement of a Fused Auditory Image, Fiziol. Chel., 1975, vol. 1, no. 2, p. 371.

    Google Scholar 

  31. Sach, A.J., Hill, N.I., and Bailey, P.J., Auditory Spatial Attention Using Interaural Time Difference, J. Exp. Psychol. Human Percept. Perform., 2000, vol. 26, p. 717.

    Article  CAS  Google Scholar 

  32. Spence, C.J. and Driver, J., Covert Spatial Orientation in Audition: Exogenous and Endogenous Mechanisms. J. Exp. Psychol. Human Percept. Perform., 1994, vol. 20, p. 555.

    Article  Google Scholar 

  33. De Santis, L., Clarke, S., and Murray, M., Automatic and Intrinsic Auditory “What” and “Where” Processing in Humans Revealed by Electrical Neuroimaging, Cerebral Cortex, 2007, vol. 17, p. 9.

    Article  PubMed  Google Scholar 

  34. Lewald, J., Riederer, K.A.J., Lentz, T., and Meister, G., Processing of Sound Location in Human Cortex, Eur. J. Neurosci., 2008, vol. 27, p. 1261.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Petropavlovskaya, L.B. Shestopalova, S.F. Vaitulevich, 2010, published in Fiziologiya Cheloveka, 2010, Vol. 36, No. 4, pp. 34–43.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petropavlovskaya, E.A., Shestopalova, L.B. & Vaitulevich, S.F. Sluggishness of auditory perception during localization of short moving sound images. Hum Physiol 36, 399–407 (2010). https://doi.org/10.1134/S0362119710040043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119710040043

Key words

Navigation