Skip to main content
Log in

Energy and fractal characteristics of physiological and pathological tremors of the human hand

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Tremors (involuntary shaking) were compared in healthy subjects and patients with the tremulous form of Parkinsonism sustaining isometric effort of the hand. For this purpose, fractal analysis and multilevel wavelet decomposition of tremor were used, and the energy characteristics determined on the basis of the spectral density of the energy of detailed components obtained at different levels of decomposition. The calculated fractal and energy characteristics of the tremor of healthy subjects were significantly lower than those of patients. If the patients took antiparkinsonian drugs at their usual doses, the characteristics shifted towards normal values. The decrease in the fractal dimension indicates an increase in the strength of the correlation in the dynamics of involuntary shaking. Thus, the characteristics studied allow not only physiological and pathological tremors to be discriminated, but also the strategy of selection of optimal drugs for relieving Parkinsonian tremor to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McAuley, J.H. and Marsden, C.D., Physiological and Pathological Tremors and Rhythmic Central Motor Control, Brain, 2000, vol. 123, no. 8, p. 1545.

    Article  PubMed  Google Scholar 

  2. Orizio, C., Perini, R., Diemont, B., et al., Spectral Analysis of Muscular Sound during Isometric Contraction of Biceps Brachii, J. Appl. Physiol., 1990, vol. 68, p. 508.

    CAS  PubMed  Google Scholar 

  3. Marsden, C.D, Origins of Normal and Pathological Tremor, in Movement Disorders: Tremor, Findley, L.J. and Capildeo, R., Eds., London: MacMillan, 1984, p. 37.

    Google Scholar 

  4. Vallbo, A.B. and Wessberg, J., Organization of Motor Output in Slow Finger Movements in Man, J. Physiol., 1993, vol. 469, p. 673.

    CAS  PubMed  Google Scholar 

  5. Farmer, S.F., Swash, M., Ingram, D.A., and Stephens, J.A., Changes in Motor Unit Synchronization Following Central Nervous Lesions in Man, J. Physiol., 1993, vol. 463, p. 83.

    CAS  PubMed  Google Scholar 

  6. Elble, R., Physiologic and Essential Tremor, Neurology, 1986, vol. 36, p. 225.

    CAS  PubMed  Google Scholar 

  7. Grillner, S., The Motor Infrastructure: From Ion Channels to Neuronal Networks, Nature Rev. Neurosci., 2003, vol. 4, p. 573.

    Article  CAS  Google Scholar 

  8. McAuley, J.H., Rothwell, J.C., and Marsden, C.D., Frequency Peaks of Tremor, Muscle Vibration and Electromyographic Activity at 10 Hz, 20 Hz and 40 Hz during Human Finger Muscle Contraction May Reflect Rhythmicities of Central Neural Firing, Exp. Brain Res., 1997, vol. 114, p. 525.

    Article  CAS  PubMed  Google Scholar 

  9. Van Galen, G.P., Van Doorn, R.R., and Schomaker, L.R., Effects of Motor Programming on the Power Spectral Density Function of Finger and Wrist Movements, J. Exp. Psychol., 1990, vol. 16, no. 4, p. 755.

    Google Scholar 

  10. Nini, A., Feingold, A., Slovin, H., and Bergman, H., Neurons in the Globus Pallidus Do not Show Correlated Activity in the Normal Monkey, but Phase-Locked Oscillations Appear in the MPTP Model of Parkinsonism, J. Neurophysiol., 1995, vol. 74, no. 4, p. 1800.

    CAS  PubMed  Google Scholar 

  11. Brown, P., Corcos, D.M., and Rothwell, J.C., Does Parkinsonian Action Tremor Contribute to Muscle Weakness in Parkinson’s Disease?, Brain, 1997, vol. 120, p. 401.

    Article  PubMed  Google Scholar 

  12. McAuley, J.H., Rothwell, J.C., Corcos, D.M., and Quinn, N.P., Levodopa Reversible Loss of Piper Rhythm in Parkinson’s Disease, J. Neurol. Neurosurg. Psychiatry, 2001, vol. 70, p. 471.

    Article  CAS  PubMed  Google Scholar 

  13. Romanov, S.P., Aleksanyan, Z.A, and Manoilov, V.V., Characteristics of Tremor in the Normal State and in Diagnosis and Treatment of Parkinsonism, Ross. Fiziol. Zh., 2002, vol. 88, no. 10, p. 1356.

    CAS  Google Scholar 

  14. Mallat, S., A Wavelet Tour of signal Processing, New York: Academic, 1999, 2nd edition.

    Google Scholar 

  15. Musalimov, V.M., Dick, O.E., and Tyurin, A.E., Action Parameters of the Energy Spectrum of Wavelet Transforms, Izv. Vyssh. Uchebn. Zaved. Priborostroenie, 2009, vol. 52, no. 5, p. 10.

    Google Scholar 

  16. Mandelbrot, B.B., The Fractal Geometry of Nature, San Francisco: W.H. Freeman, 1982.

    Google Scholar 

  17. Peng, C.K., Havlin, S., Stanley, H.E., and Goldberger, A.L., Quantification of Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time Series, Chaos, 1995, vol. 5, no. 1, p. 82.

    Article  CAS  PubMed  Google Scholar 

  18. Bedrov, Ya.A., Dick, O.E., Romanov, S.P., and Nozdrachev, A.D., The Method of Detection of Quantitative Differences in the Parameters of Oscillations of Involuntary Effort in Healthy Subjects and Patients with Parkinsonism, Byull. Eksp. Biol. Med., 2008, vol. 146, p. 477.

    Article  Google Scholar 

  19. Scafetta, N., Moon, R.E., and West, B.J., Fractal Response of Physiological Signals to Stress Conditions, Environmental Changes, and Neurodegenerative Diseases, Complexity, 2007, vol. 12, no. 5, p. 12.

    Article  Google Scholar 

  20. Sekine, M., Tamura, T., Akay, M., et al., Discrimination of Walking Patterns Using Wavelet-Based Fractal Analysis, Neur. Syst. Rehab. Eng. IEEE Trans., 2002, vol. 10, no. 3, p. 188.

    Article  Google Scholar 

  21. Gates, D.H. and Dingwell, J.B., Peripheral Neuropathy Does not Alter the Fractal Dynamics of Stride Intervals of Gait, J. Appl. Physiol., 2007, vol. 102, no. 3, p. 965.

    Article  PubMed  Google Scholar 

  22. Rasouli, G., Rasouli, M., Lenz, F.A., et al., Fractal Characteristics of Human Parkinsonian Neuronal Spike Trains, Neuroscience, 2006, vol. 139, no. 3, p. 1153.

    Article  CAS  PubMed  Google Scholar 

  23. Varanda, W.A., Liebovitch, L.S., Figueroa, J.N., and Nogueira, R.A., Hurst Analysis Applied to the Study of Single Calcium-Activated Potassium Channel Kinetics, J. Theor. Biol., 2000, vol. 206, no. 3, p. 343.

    Article  CAS  PubMed  Google Scholar 

  24. Brazhe, A.R., Astaf’ev, M.E., Maksimov, G.V., et al., Calculation of Local Hurst Exponents for Calcium-Activated Potassium Channels, Biofizika, 2004, vol. 46, no. 6, p. 1075.

    Google Scholar 

  25. Lowen, S.B., Liebovitch, L.S., and White, J.A., Fractal Ion-Channel Behaviour Generates Fractal Firing Patterns in Neuronal Models, Phys. Rev. E., 1999, vol. 59, no. 5, p. 5970.

    Article  CAS  Google Scholar 

  26. Brazhe, A.R. and Maksimov, G.V., Self-Organized Critical Gating of Ion Channels: On the Origin of Long-Term Memory in Dwell Time Series, Chaos, 2006, vol. 16, no. 3, p. 33129.

    Article  CAS  Google Scholar 

  27. Manabe, Y., Honda, E., Shiro, Y., et al., Fractal Dimension Analysis of Static Stabilometry in Parkinson’s Disease and Spinocerebellar Ataxia, Neurol. Res., 2001, vol. 23, p. 397.

    Article  CAS  PubMed  Google Scholar 

  28. Sekine, M., Akay, M., Tamura, T., et al., Fractal Dynamics of Body Motion in Patients with Parkinson’s Disease, J. Neur. Eng., 2004, vol. 1, p. 8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.E. Dick, S.P. Romanov, A.D. Nozdrachev, 2010, published in Fiziologiya Cheloveka, 2010, Vol. 36, No. 2, pp. 92–100.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dick, O.E., Romanov, S.P. & Nozdrachev, A.D. Energy and fractal characteristics of physiological and pathological tremors of the human hand. Hum Physiol 36, 203–210 (2010). https://doi.org/10.1134/S036211971002012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211971002012X

Key words

Navigation