Skip to main content
Log in

Relationships between EEG θ and α spectral amplitudes and cognitive ability in preschool children

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Relationships between individual θ and α EEG amplitudes and intelligence were studied in five- to six-year-old children. EEG was recorded in 83 children in three functional states: eyes closed, sustained visual attention, and attention to adult’s speech. Intelligence was assessed using Kaufman’s K-ABC test. Relationships between the EEG parameters and intelligence were studied using correlational and regression analyses. The results suggest that stable individual differences in local spectral amplitudes (SA) in the EEG θ and α bands predict reliably (when the covariant proportions of their variances is controlled) the level of simultaneous data processing in children under the conditions of sustained attention but not at rest. Thus, the individual features of the limbic thalamocortical and corticothalamic attentional systems are expected to influence cognitive abilities at the preschool age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marosi, E., Rodriguez, H., Harmony, T., et al., Broad Band Spectral EEG Parameters Correlated with Different IQ Measurements, Int. J. Neurosci., 1999, vol. 97. no. 1–2, p. 17

    Article  PubMed  Google Scholar 

  2. Polunina, A.G. and Davydov, D.M., EEG Correlates of Wechsler Adult Intelligence Scale, Int. J. Neurosci., 2006, vol. 116, no. 10, p. 1231.

    Article  PubMed  Google Scholar 

  3. Jaušovec, N., Differences in EEG alpha Activity Related to Giftedness, Intelligence, 1996, vol. 23, no. 3, p. 159.

    Article  Google Scholar 

  4. Jaušovec, N. and Jaušovec, K., Differences in Resting EEG Related to Ability, Brain Topogr., 2000, vol. 12, p. 229.

    Article  PubMed  Google Scholar 

  5. Doppelmayr, M., Klimesch, W., Stadler, W., Pölhuber, D., and Heine, C., EEG alpha Power and Intelligence, Intelligence, 2002, vol. 30, no. 3, p. 289.

    Article  Google Scholar 

  6. Schmid, R.G., Tirsch, W.S., and Scherb, H., Correlation between Spectral EEG Parameters and Intelligence Test Variablels in School-Age Children, Clin. Neurophysiol., 2002, vol. 113, no. 10, p. 1647.

    Article  PubMed  CAS  Google Scholar 

  7. Thatcher, R.W., North, D., and Biver, C., EEG and Intelligence: Relations between EEG Coherence, EEG Phase Delay and Power, Clin. Neurophysiol., 2005, vol. 116, no. 9, p. 2129.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, C.M., Wright, M.J., and Hansell, N.K., Genetic Variation of Individual alpha Frequency (IAF) and alpha Power in a Large Adolescent Twin Sample, Int. J. Psychophysiol., 2006, vol. 61, no. 2, p. 235.

    Article  Google Scholar 

  9. Liu, T., Shi, J., Zhao, D., and Yang, J., The Relationship between EEG Band Power, Cognitive Processing, and Intelligence in School-Age Children, Psychol. Sci. Quart., 2008, vol. 50, no. 2, p. 259.

    Google Scholar 

  10. Rowe, D.L., Cooper, N.J., Liddell, B.J., et al., Brain Structure and Function Correlates of General and Social Cognition, J. Integrat. Neurosci., 2007, vol. 6, no. 1, p. 35.

    Article  Google Scholar 

  11. Orekhova, E.V., Stroganova, T.A., and Polsikera, I.N., Alpha Activity as an Index of Cortical Inhibition during Sustained Internally Controlled Attention in Infants, Clin. Neurophysiol., 2001, vol. 112, no. 5, p. 740.

    Article  PubMed  CAS  Google Scholar 

  12. Klimesch, W., EEG alpha and theta Oscillations Reflect Cognitive and Memory Performance: a Review and Analysis, Brain Res. Rev., 1999, vol. 29, no. 2–3, p. 169.

    Article  PubMed  CAS  Google Scholar 

  13. Desimone, R. and Ungedeider, L.G., Neural Mechanisms of Visual Processing in Monkeys, Handbook of Neuropsychology, F. Boller and J. Grafman Eds., New York: Elsevier, 1989, vol. 2, p. 267.

    Google Scholar 

  14. Pribram, K.H. and McGuinness, D., Attention and Para-Attention Processing: Event-Related Brain Potential as Tests of a Model, Annals of the New York Academy of Sciences, D. Friedman and G. Bruder Eds., New York: New York Academy of Sciences, 1992, p. 658.

    Google Scholar 

  15. Guselínikov, V.I. and Iznak, A.F. Ritmicheskaya aktivností v sensornykh sistemakh, (Rhythmic Activity in Sensory Systems), Moscow: Mosk. Gos. Univ., 1983.

    Google Scholar 

  16. Stroganova, T.A. and Orekhova, E.V., EEG and Infant States, Infant EEG and Event-Related Potentials, de Haan, M., Ed., Hove: Psychology Press, 2007, p. 251.

    Google Scholar 

  17. Vinogradova, O.S., Kitchigina, V.F., and Zenchenko, C.I., Pacemaker Neurons of the Forebrain Medical Septal Area and theta Rhythm of the Hippocampus, Membr. Cell Biol., 1998, vol. 11, no. 6, p. 715.

    PubMed  CAS  Google Scholar 

  18. Suffczynski, P., Kalitzin, S., Pfurtscheller, G., and Lopes da Silva, F.H., Computational Model of Thalamo-Cortical Networks: Dynamical Control of alpha Rhythms in Relation to Focal Attention, Int. J. Psychophysiol., 2001, vol. 43, no. 1, p. 25.

    Article  PubMed  CAS  Google Scholar 

  19. Schweizer, K., Moosbrugger, H., and Goldhammer, F., The Structure of the Relationship between Attention and Intelligence, Intelligence, 2005, vol. 33, no. 6, p. 589.

    Article  Google Scholar 

  20. Rueda, M.R., Rothbart, M.K., McCandliss, B.D., Saccomanno, L., and Posner, M.I., Training, Maturation, and Genetic Influences on the Development of Executive Attention, Proc. Nation. Acad. Sci., 2005, vol. 102, no. 41, p. 14931.

    Article  CAS  Google Scholar 

  21. Orekhova, E.V., Stroganova, T.A., Posikera, I.N., and Elam, M., EEG theta Rhythm in Infants and Preschool Children, Clin. Neurophysiol., 2006, vol. 117, no. 5. p. 1047.

    Article  PubMed  CAS  Google Scholar 

  22. Kaufman, A.S. and Kaufman, N.L., Kaufman Assessment Battery for Children, Circke Pines, MN: American Guidance Service, 1983.

    Google Scholar 

  23. Novikova, S.I., Stroganova, T.A., Posikera, I.N., et al., Identification of EEG Rhythm Diapasons in Preschool Children, in II Mezhdunarodnaya konferentsiya po kognitivnoi nauke (II Int. Conference on Cognitive Science), St. Petersburg: St. Petersburg State University, 2006, p. 379.

    Google Scholar 

  24. Smith, D.J., Posthuma, D., Boomsma, D.I., and de Geus E.G.C., Heritability of Background EEG across the Power Spectrum, Psychophysiology, 2005, vol. 42, no. 6, p. 691.

    Article  Google Scholar 

  25. Anokhin, A.P., van Baal G.C.M., van Beijsterveldt, C.E.M., et al., Genetic Correlation between the P300 Event-Related Brain Potential and the EEG Power Spectrum, Behav. Genet., 2001, vol. 31, no. 6, p. 545.

    Article  PubMed  CAS  Google Scholar 

  26. Nunez, P.L. and Srintvasan, R., Electric Fields of the Brain, in The Neurophysics of EEG, New Yourk: Oxord Univ. Press, 2006, 2nd edition.

    Google Scholar 

  27. Vogel, F., The Genetic Basis of the Normal Human Electroencephalogram (EEG), Hum. Genet., 1970, vol. 10, no. 2, p. 91.

    Article  CAS  Google Scholar 

  28. Machinskaya, R.I., Lukashevich, I.P., and Fishman, M.N., Dynamics of Brain Electrical Activity in 5- to 8-Year-Old Normal Children and Children with Learning Difficulties, Fiziol. Chel., 1997, vol. 23, no. 5, p. 5. [Hum. Physiol. (Eng. Transl.), 1997, vol. 23, no. 5, p. 517].

    Google Scholar 

  29. Marshall, P.J. and Fox, N.A., BEIP Core Group. A Comparison of the Electroencephalogram between Institutionalized and Community Children in Romania, J. Cognit. Neurosci., 2004, vol. 16, no. 8, p. 1327.

    Article  Google Scholar 

  30. Golubeva, E.A., Sposobnosti, lichností, individualíností, (Ability, Personality, Individuality), Dubna: Fenix+, 2005.

    Google Scholar 

  31. Stough, C., Donaldson, C., Scarlata, B., and Ciorciari, J., Psychophysiological Correlates of the NEO PI-R Openness, Agreeablenness, and Conscientionusness: Preliminary Results, Int. J. Psychophysiol., 2001, vol. 41, no. 1, p. 87.

    Article  PubMed  CAS  Google Scholar 

  32. Harris, J.A., Measured Intelligence, Achievement, Openness to Experience and Creativity, Personality and Individual Differences, 2004, vol.36, no. 4, p. 913.

    Article  Google Scholar 

  33. Demiralp, T., Basar-Eroglu, C., Rahn, E., and Basar, E., Event-Related theta Rhythms in Cat Hippocampus and Prefrontal Cortex during an Omitted Stimulus Paradigm, Int. J. Psychophysiol., 1994, vol. 18, no. 1, p. 35.

    Article  PubMed  CAS  Google Scholar 

  34. Orechova, E.V., Stroganova, T.A., and Posikera, I.N., Theta Synchronization during Sustained Anticipatory Attention in Infants over the Second Half of the First Year of Life, Int. J. Psychophysiol., 1999, vol. 32, no. 2, p. 151.

    Article  Google Scholar 

  35. Kahana, M.J., Seelig, D., and Madsen, J.R., Theta Returns, Curr. Opin. Neurobiol., 2001, vol. 11, no. 6, p. 739.

    Article  PubMed  CAS  Google Scholar 

  36. Steriade, M., Gloor, P., and Llinas, R.R., Report of IFCN Committee on Basic Mechanisms. Basic Mechanisms of Cerebral Rhythmic Activity, EEG Clin. Neurophysiol., 1990, vol. 76, no. 6, p. 481.

    Article  CAS  Google Scholar 

  37. Grachev, V.V., Clinical and Encephalographic Signs of Rett Syndrome, Extended Abstract of Cand. Sci. (Med.) Dissertation, Moscow, 2001.

  38. Gorbachevskaya, N.L., Peculiarities of EEG Formation in Healthy Children and in Those with Pervasive Developmental Disorders, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 2000.

  39. Niedermeyer, E., Naidu, S.B., and Plate, C., Unusual EEG theta Rhythms over Central Region in Rett Syndrome: Considerations of the Underlying Dysfunctions, Clin. Electroencephalogr., 1997, vol. 28, no. 1, p. 36.

    PubMed  CAS  Google Scholar 

  40. Chabot, R.J., di Michele, F., Prichep, L., and John, E.R., The Clinical Role of Computerized EEG in the Evaluation and Treatment of Learnind and Attention Disorders in Children and Adolescents, J. Neurophychiatry Clin. Neurosci., 2001, vol. 13, no. 2, p. 171.

    CAS  Google Scholar 

  41. Pfurtscheller, G. and Klimesch, W., Functional Topography during a Visuoverbal Judgment Task Studied with Event-Related Desynchronization Mapping, J. Clin. Neurophysiol., 1992, vol. 9, no. 1, p. 120.

    Article  PubMed  CAS  Google Scholar 

  42. Lopes da Silva, F.H., Witter, M.P., Boeijinga, P.H., and Lohman, A.H., Anatomic Organization and Physiology of the Limbic Cortex, Physiol. Rev., 1990, vol. 70, no. 2, p. 453.

    PubMed  CAS  Google Scholar 

  43. Guillery, R.W. and Harting, J.K., Structure and Connections of the Thalamic Reticular Nucleus: Advancing Views over Half a Century, J. Comp. Neurol., 2003, vol. 463, no. 4, p. 360.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.I. Novikova, E.V. Malakhovskaya, N.P. Pushina, M.M. Tsetlin, A.I. Filatov, I.N. Posikera, T.A. Stroganova, 2009, published in Fiziologiya Cheloveka, 2009, Vol. 35, No. 4, pp. 20–27.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikova, S.I., Malakhovskaya, E.V., Pushina, N.P. et al. Relationships between EEG θ and α spectral amplitudes and cognitive ability in preschool children. Hum Physiol 35, 409–415 (2009). https://doi.org/10.1134/S0362119709040033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119709040033

Keywords

Navigation