Skip to main content
Log in

The relationship between the dynamics of cardiorespiratory variables and rowing ergometer performance

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The relationship between the dynamics of cardiorespiratory parameters of elite rowers determined in ergospirometer testing and their performance in 2000- and 6000-m Concept II rowing ergometer contests was analyzed. The analysis showed a strong correlation between sports results and physiological parameters, such as the maximal oxygen consumption in absolute units, oxygen consumption at the aerobic threshold and respiratory compensation point, fat-free body mass, maximum attainable power of performance, and powers at the aerobic threshold and respiratory compensation point, despite the substantial period of time between the contests and the functional ergospirometer tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter, E.M., British Association of Sport and Exercise Sciences. Sport and Exercise Physiology Testing: Guidelines: the British Association of Sport and Exercise Sciences Guide, vol. 1: Sport Testing, New York: Routledge, 2006.

    Google Scholar 

  2. Secher, N.H., Physiological and Biomechanical Aspects of Rowing. Implications for Training, Sports Med., 1993, vol. 15, no. 1, p. 24.

    Article  PubMed  CAS  Google Scholar 

  3. Shephard, R.J., Science and Medicine of Rowing: A Review, J. Sports Sci., 1998, vol. 16, p. 603.

    Article  Google Scholar 

  4. Riechman, S.E., Zoeller, R.F., Balasekaran, G., et al., Prediction of 2000 m Indoor Rowing Performance Using a 30 s Sprint and Maximal Oxygen Uptake, J. Sports Sci., 2002, vol. 20, no. 9, p. 681.

    Article  PubMed  Google Scholar 

  5. Ingham, S.A., Whyte, G.P., Jones, K., and Nevill, A.M., Determinants of 2000 m Rowing Ergometer Performance in Elite Rowers, Eur. J. Appl. Physiol, 2002, vol. 88, no. 3, p. 243.

    Article  PubMed  CAS  Google Scholar 

  6. Kramer, J.F., Leger, A., Paterson, D.H., and Morrow, A., Rowing Performance and Selected Descriptive, Field, and Laboratory Variables, Can. J. Appl. Physiol., 1994, vol. 19, no. 2, p. 174.

    PubMed  CAS  Google Scholar 

  7. Steinacker, J.M., Physiological Aspects of Training in Rowing, Int. J. Sports. Med., 1993, vol. 14, no. Suppl 1.

  8. Bourgois, J., Claessens, A.L., Vrijens, J., et al., Anthropometric Characteristics of Elite Male Junior Rowers, Br. J. Sports. Med, 2000, vol. 34, no. 3, p. 213.

    Article  PubMed  CAS  Google Scholar 

  9. Yoshiga, C.C. and Higuchi, M., Rowing Performance of Female and Male Rowers, Scand. J. Med. Sci. Sports, 2003, vol. 13, no. 5, p. 317.

    Article  PubMed  CAS  Google Scholar 

  10. Messonnier, L., Freund, H., Bourdin, M., et al., Lactate Exchange and Removal Abilities in Rowing Performance, Med. Sci. Sports Exercise, 1997, vol. 29, no. 3, p. 396.

    CAS  Google Scholar 

  11. Maestu, J., Jurimae, J., and Jurimae, T., Monitoring of Performance and Training in Rowing, Sports Med., 2005, vol. 35, no. 7, p. 597.

    Article  PubMed  Google Scholar 

  12. Raslanas, A., Specific Features of Anaerobic and Aerobic Processes in the Organism of High Sport-Class Rowers, Fiziol. Chel., 1999, vol. 25, no. 4, p. 106 [Human Physiol. (Engl. Transl.), vol. 25, no. 4, p. 467].

    CAS  Google Scholar 

  13. Carter, J. and Jeukendrup, A.E., Validity and Reliability of Three Commercially Available Breath-By-Breath Respiratory Systems, Eur. J. Appl. Physiol., 2002, vol. 86, no. 5, p. 435.

    Article  PubMed  Google Scholar 

  14. Rietjens, G.J., Kuipers, H., Kester, A.D., and Keizer, H.A., Validation of a Computerized Metabolic Measurement System (Oxycon-Pro) During Low and High Intensity Exercise, Int. J. Sports. Med., 2001, vol. 22, no. 4, p. 291.

    Article  PubMed  CAS  Google Scholar 

  15. Doherty, M., Nobbs, L., and Noakes, T.D., Low Frequency of the “Plateau Phenomenon” During Maximal Exercise in Elite British Athletes, Eur. J. Appl. Physiol., 2003, vol. 89, no. 6, p. 619.

    Article  PubMed  CAS  Google Scholar 

  16. Wasserman, K., Whipp, B.J., Koyl, S.N., and Beaver, W.L., Anaerobic Threshold and Respiratory Gas Exchange During Exercise, J. Appl. Physiol., 1973, vol. 35, no. 2, p. 236.

    PubMed  CAS  Google Scholar 

  17. Wasserman, K., Hansen, J.E., Sue, D.Y., et al., Principles of Exercise Testing and Interpretation, Philadelphia: Lippincott Willians and Wilkins, 1999, 3rd edition.

    Google Scholar 

  18. Davis, J.A., Anaerobic Threshold: Review of the Concept and Directions for Future Research, Med. Sci. Sports Exercise, 1985, vol. 17, no. 1, p. 6.

    CAS  Google Scholar 

  19. Hagerman, F.C., Connors, M.C., Gault, J.A., et al., Energy Expenditure During Simulated Rowing, J. Appl. Physiol., 1978, vol. 45, no. 1, p. 87.

    PubMed  CAS  Google Scholar 

  20. Cosgrove, M.J., Wilson, J., Watt, D., and Grant, S.F., The Relationship between Selected Physiological Variables of Rowers and Rowing Performance As Determined by a 2000 M Ergometer Test, J. Sports Sci., 1999, vol. 17, no. 11, p. 845.

    Article  PubMed  CAS  Google Scholar 

  21. Fiskerstrand, A. and Seiler, K.S., Training and Performance Characteristics among Norwegian International Rowers 1970–2001, Scand. J. Med. Sci. Sports, 2004, vol. 14, no. 5, p. 303.

    Article  PubMed  CAS  Google Scholar 

  22. Venables, M.C., Achten, J., and Jeukendrup, A.E., Determinants of Fat Oxidation During Exercise in Healthy Men and Women: A Cross-Sectional Study, J. Appl. Physiol., 2005, vol. 98, no. 1, p. 160.

    Article  PubMed  Google Scholar 

  23. Ruby, B.C., Coggan, A.R., and Zderic, T.W., Gender Differences in Glucose Kinetics and Substrate Oxidation During Exercise Near the Lactate Threshold, J. Appl. Physiol., 2002, vol. 92, no. 3, p. 1125.

    PubMed  CAS  Google Scholar 

  24. Messonnier, L., Freund, H., Bourdin, M., et al., Lactate Exchange and Removal Abilities in Rowing Performance, Med. Sci. Sports Exerc, 1997, vol. 29, no. 3, p. 396.

    PubMed  CAS  Google Scholar 

  25. Platonov, V.N., Sistema podgotovki sportsmenov v olimpiiskom sporte. Obshchaya teoriya i ee prakticheskie prilozheniya (Athlete Training System in Olympic Sports: The General Theory and Its Practical Applications), Kiev: Olimpiiskaya Literatura, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.V. Drarnitsyn, A.M. Ivanova, V.V. Sazonov, 2009, published in Fiziologiya Cheloveka, 2009, Vol. 35, No. 3, pp. 74–81.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drarnitsyn, O.V., Ivanova, A.M. & Sazonov, V.V. The relationship between the dynamics of cardiorespiratory variables and rowing ergometer performance. Hum Physiol 35, 325–331 (2009). https://doi.org/10.1134/S0362119709030086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119709030086

Keywords

Navigation