Skip to main content
Log in

Chaotic and ordered processes mediating the knee-jerk reflex

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

In nerve chains that mediate tendon reflexes one can distinguish structured activity that represents the development of reflex excitation in response to muscle stretch and stochastic activity which is the result of fluctuations emerging in nerve structures. In analyzing neuron processes, one should consider also the factor of information whose carriers in nerve chains are structured and stochastic activities. A putative generator of fluctuations of muscle responses (possibly the main one) are cortex levels. Stochastic processes in neuron chains cause instability of the motor system at rest and in movement. Stochastic activity maintains the tone of skeletal muscles and affects the sensitivity of sensory systems via the mechanism of stochastic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lombard, W.P., The Variations of the Normal Knee-Jerk and Their Relation to the Activity of the Central Nervous System, Am. J. Physiol., 1887–1888, vol. 1, p. 2.

    Google Scholar 

  2. Lombard, W.P., On the Nature of the Knee-Jerk, J. Physiol., 1889, vol. 10, nos. 1–2, p. 122.

    PubMed  CAS  Google Scholar 

  3. Bowditch, H.P. and Warren, J.W., The Knee-Jerk and Its Physiological Modifications, J. Physiol., 1890, vol. 11, nos. 1–2, p. 25.

    PubMed  CAS  Google Scholar 

  4. Uysal, H., Mogyoros, I., and Burke, D., Reproducibility on Tendon Jerk Reflexes During Voluntary Contraction, Clin. Neurophysiol, 1999, vol. 110, no. 8, p. 1481.

    Article  PubMed  CAS  Google Scholar 

  5. Simons, D.G. and Lamonte, R.J., Automated System for the Measurement of Reflex Responses to Patellar Taps in Man, Am. J. Physiol., 1971, vol. 50, p. 72.

    CAS  Google Scholar 

  6. Stam, J. and Tan, K.M., Tendon Reflex Variability and Method of Stimulation, EEG Clin. Neurophysiol., 1987, vol. 67, no. 5, p. 463.

    Article  CAS  Google Scholar 

  7. Safronov, V.A., Procedurefor Investigating the Patellar Reflex under Isometric Conditions, Fiziol. Chel., 2005, vol.31, no. 6, p. 116 [Human Physiol. (Engl. Transl.), vol. 31, no. 6, p. 724].

    CAS  Google Scholar 

  8. Safronov, V.A., Patellar Reflex: I. Studies in Healthy Subjects, Fiziol. Chel., 2006, vol. 32, no. 2, p. 39 [Human Physiol. (Engl. Transl.), vol. 32, no. 2, p. 157].

    Google Scholar 

  9. Safronov, V.A., Patellar Reflex. II. Associated Activation, Fiziol. Chel., 2006, vol. 32, no. 4, p. 83 [Human Physiol. (Engl. Transl.), vol. 32, no. 4, p. 445].

    Google Scholar 

  10. Safronov, V.A., Patellar Reflex. III. Comparison of Reflexes in the Cases of Normal and Pathological Activation, Fiziol. Chel., 2007, vol. 33, no. 1, p. 87 [Human Physiol. (Engl. Transl.), vol. 33, no. 1, p. 75].

    CAS  Google Scholar 

  11. Safronov, V.A., On Regulation of Muscular Tone, Biofizika, 1970, vol. 15, no. 6, p. 1101.

    Google Scholar 

  12. Grigor’ev, A.I., Kozlovskaya, I.B., and Shenkman, B.S., The Role of Support Afferentation in the Organization of Tonic Muscular System, Ross. Fiziol. Zh. I.M. Sechenova, 2004, vol. 90,issue 5, p. 508.

    Google Scholar 

  13. Matthews, P.B.C., Properties of Human Motoneurones and Their Synaptic Noise Deduced from Motor Unit Recordings with the Aid of Computer Modelling, J. Physiol. (Paris:), 1999, vol. 93, nos. 1–2, p. 135.

    Article  CAS  Google Scholar 

  14. Matthews, P.B.C., Measurement of Excitability of Tonically Firing Neurones Tested in a Variable-Threshold Model Motoneurone, J. Physiol., 2002, vol. 544, p. 315.

    Article  PubMed  CAS  Google Scholar 

  15. Schulte-Mattler, W.J., Georgiadis, D., and Ziers, S., Discharge Patterns of Spontaneous Activity and Motor Units on Concentric Needle Electromyography, Muscle Nerve, 2001, vol. 24, no. 1, p. 123.

    Article  PubMed  CAS  Google Scholar 

  16. Herrmann, A. and Gerstner, W., Noise and the PSTH Response to Current Transients: II. Integrate-and-Fire Model with Slow Recovery and Application to Motoneuron Data, J. Comput. Neurosci., 2002, vol. 12, no. 2, p. 83.

    Article  PubMed  CAS  Google Scholar 

  17. Hales, J.P., Lin, C.S., and Bostock, H., Variation in Excitability of Single Human Motor Axons, Related to Stochastic Properties of Nodal Sodium Channels, J. Physiol., 2004, vol. 559, p. 953.

    PubMed  CAS  Google Scholar 

  18. Kuwabara, S., Misawa, S., Kanai, K., et al., The Effects of Physiological Fluctuation of Serum Potassium Levels on Excitability Properties in Healthy Human Motor Axons, Clin. Neurophysiol., 2007, vol. 118, no. 2, p. 278.

    Article  PubMed  CAS  Google Scholar 

  19. Mitchell, W.K., Baker, M.R., and Baker, S.N., Muscle Responses to Transcranial Stimulation in Man Depend on Background Oscillatory Activity, J. Physiol., 2007, vol. 283, no. 3, p. 567.

    Article  Google Scholar 

  20. Sherrington, Ch.S., The Integrative Action of the Nervous System, NewHaven, 1906.

  21. Hunt, C.C., Temporal Fluctuation in Excitability of Spinal Motoneurons and Its Influence on Monosynaptic Reflex Response, J. Gen. Physiol., 1955, vol. 38, no. 6, p. 801.

    Article  PubMed  CAS  Google Scholar 

  22. Lloyd, D.P.C. and McIntyre, A.K., Monosynaptic Reflex Responses of Individual Motoneuons, J. Gen. Physiol., 1955, vol. 38, p. 771.

    Article  PubMed  CAS  Google Scholar 

  23. Somjen, G.G. and Heath, C.J., Covariation of Monosynaptic Reflexes in Spinal and Decerebrate Cats, Exp. Brain Res., 1966, vol. 15, p. 79.

    CAS  Google Scholar 

  24. Rall, W. and Hant, C.C., Analysis of Reflex Variability in Term of Partially Correlated Excitability Fluctuations in a Population of Motoneurons, J. Gen. Physiol., 1956, vol. 39, p. 397.

    Article  PubMed  CAS  Google Scholar 

  25. Manjarrez, E., Rojas-Piloni, G., Jimenez, I., and Rudomin, P., Modulation of Synaptic Transmission from Segmental Afferents by Spontaneous Activity of Dorsal Horn Spinal Neurons in the Cat, J. Physiol., 2000, vol. 529, no. 2, p. 445.

    Article  PubMed  CAS  Google Scholar 

  26. Manjarrez, E., Hernand-Paxtian, Z., and Kohn, A.F., Spinal Source for the Synchronous Fluctuations of Bilateral Monosynaptic Reflexes in Cat, J. Neurophysiol., 2005, vol. 94, no. 5, p. 3199.

    Article  PubMed  CAS  Google Scholar 

  27. Manjarrez, E., Jimenez, I., and Rudomin, P., Intersegmental Synchronization of Spontaneous Activity of Dorsal Horn Neurons in the Cat Spinal Cord, Exp. Brain Res., 2003, vol. 148, p. 401.

    PubMed  CAS  Google Scholar 

  28. Garcia, C.A., Chavez, D., Jimenez, I., and Rudomin, P., Effects of Spinal and Peripheral Nerve Lesions on the Intersegmental Synchronization of the Spontaneous Activity of Dorsal Horn Neurons in the Cat Lumbosacral Spinal Cord, Neurosci. Lett., 2004, vol. 361, p. 102.

    Article  PubMed  CAS  Google Scholar 

  29. Ellaway, P.H., Davey, N.J., Maskill, D.W., et al., Variability in the Amplitude of Skeletal Muscle Responses to Magnetic Stimulation of the Motor Cortex in Man, EEG Clin. Neurophysiol., 1998, vol. 109, no. 5, p. 104.

    CAS  Google Scholar 

  30. Hardin, W.B., Spontaneous Activity in the Pyramidal Tract of Chronic Cats and Monkeys, Arch. Neurol., 1965, vol. 13, p. 501.

    PubMed  Google Scholar 

  31. Baldissera, F., Borroni, P., Cavellari, P., and Cerri, G., Excitability Changes in Human Corticospinal Projections to Forearm Muscles During Voluntary Movement of Ipsilateral Foot, J. Physiol., 2002, vol. 539, no. 9, p. 903.

    Article  PubMed  CAS  Google Scholar 

  32. Adrian, E.D. and Moruzzi, G., Impulses in the Pyramidal Tract, J. Physiol., 1939, vol. 97, no. 2, p. 153.

    PubMed  CAS  Google Scholar 

  33. Tower, S.S., Pyramidal Lesion in the Monkey, Brain, 1940, vol. 63, p. 36.

    Article  Google Scholar 

  34. Doyon, J. and Benali, H., Reorganization and Plasticity in the Adult Brain During Learning of Motor Skills, Curr. Opin. Neurobiol., 2005, vol. 15, p. 161.

    Article  PubMed  CAS  Google Scholar 

  35. Phillips, C.G., Actions of Antidromic Pyramidal Volleys on Single Betz Cells in the Cat, Quart. J. Exp. Physiol., 1959, vol. 44, p. 1.

    PubMed  CAS  Google Scholar 

  36. Creutzfeldt, O.D., Lux, H.D., and Waltanable, S., in The Thalamus, Purpura, D.R.. and Yahr, M.D., Eds., New York, 1966.

  37. Evarts, E.V., Relation of Discharge Frequency to Conduction Velocity in Pyramidal Tract Neurons, J. Neurophysiol., 1965, vol. 28, p. 216.

    PubMed  CAS  Google Scholar 

  38. Granit, R., Elektrofiziologicheskie issledovaniya retseptsii (Electrophysiological Studies of Reception), Moscow: Inostrannaya Literatura, 1957.

    Google Scholar 

  39. Granit, R., Osnovy regulyatsii dvizhenii (Bases of Regulation of Movements), Moscow: Nauka, 1973.

    Google Scholar 

  40. Jang, R., Neuronal Integration in the Visual Cortex and Its Significance for Visual Information, in Symposium on Principles of Sensory Communication, New York, 1961.

  41. Kim, M.S., Masakado, Y., Tomita, Y., et al., Synchronization of Single Motor Units During Voluntary Contractions in the Upper and Lover Extremities, Clin. Neurophysiol., 2001, vol. 112, no. 7, p. 1243.

    Article  PubMed  CAS  Google Scholar 

  42. Pierrot-DeSeilligny E. and Marchand-Pauvert V., Propriospinal Transmission of Part of the Corticospinal Excitation in Humans, Muscle Nerve, 2002, vol. 26, p. 155.

    Article  PubMed  Google Scholar 

  43. Mrachacz-Kersting, N. and Sinkjaer, T., Reflex and Non-Reflex Torque Responses to Stretch of the Human Knee Extensors, Exp. Brain Res., 2003, vol. 151, no. 1, p. 72.

    Article  PubMed  CAS  Google Scholar 

  44. Cathers, I., O’Dwyer, N., and Neilson, P., Variation of Magnitude and Timing of Wrist Flexor Stretch Reflex across the Full Range of Voluntary Activation, Exp. Brain Res., 2004, vol. 157, no. 3, p. 324.

    Article  PubMed  CAS  Google Scholar 

  45. Carroll, T., Baldwin, E.R.L., Collins, D.F., and Zehr, E.P., Corticospinal Exitability Is Lower During Rhythmic Arm Movement Then During Tonic Contraction, J. Neurophysiol., 2006, vol. 95, no. 2, p. 914.

    Article  PubMed  Google Scholar 

  46. Kujirai, K., Kujirai, T., Sinkjaer, T., and Rothwell, J.C., Associative Plasticity in Human Motor Cortex During Voluntary Muscle Contraction, J. Neurophysiol., 2006, vol. 96, no. 3, p. 1133.

    Article  Google Scholar 

  47. Wartenberg, R., The Examination of Reflexes, Chicago: The Year Book Publishers, 1945.

    Google Scholar 

  48. Hagbarth, K.E., Wallin, G., Burke, D., and Lofstedt, L., Effects of the Jendrassik Manoevre on Muscle Spindle Activity in Man, J. Neurol. Neurosurg. Psychiatry, 1975, vol. 38, no. 7, p. 636.

    Article  PubMed  CAS  Google Scholar 

  49. Bedingham, W. and Tatton, W.G., Dependence of EMG Responses Evoked by Imposed Wrist Displacements on Pre-Existing Activity in the Stretched Muscles, Can. J. Neurol. Sci., 1984, vol. 11, no. 2, p. 272.

    PubMed  CAS  Google Scholar 

  50. Kozarov, D.S. and Shapkov, Yu.T., Dvigatel’nye edinitsy skeletnykh myshts cheloveka (Motor Units of Skeletal Muscles in Humans), Leningrad: Nauka, 1983.

    Google Scholar 

  51. Kazakov, V.N. and Natrus, L.V., Background Activity of Neurons of Anterior Hypothalamus and Its Modulation as a Functional Basis of Hypothalamic Mechanisms of Regulation, Neirofiziologiya, 2005, vol. 4, p. 34.

    Google Scholar 

  52. Zhuravin, I.A., Background Activity of Tailed Nucleus in Monkey in a Chronic Experiment, Neirofiziologiya, 1974, vol. 6, no. 1, p. 3.

    CAS  Google Scholar 

  53. Raeva, S.N., Mikroelektrodnye issledovaniya aktivnosti neironov golovnogo mozga cheloveka (Microelectrode Studies of the Activity of the Human Brain), Moscow: Nauka, 1977.

    Google Scholar 

  54. Zenkov, L.R., Klinicheskaya Elektroentsefalografiya s Elementami Epileptologii (Clinical Electroencephalography with Elements of Epileptology), Taganrog: TRTU, 1996.

    Google Scholar 

  55. Zabolotnykh, V.A., Komantsev, V.N., and Povorinskii, A.G., Prakticheskii kurs klassicheskoi klinicheskoi elektromiografii (Practical Course of Classical Clinical Electromyography), St. Petersburg, 1998.

  56. Gnezditskii, V.V., Obratnaya Zadacha EEG I Klinicheskaya Elektroentsefalografiya (Kartirovanie I Lokalizatsiya Istochnikov Elektricheskoi Aktivnosti Mozga) (Reverse Task of EEG and Clinical Electroencephalography (Mapping and Localization of Sources of the Brain Electric Acivity)), Taganrog: TRTU, 2000.

    Google Scholar 

  57. Maiorchik, V.E., Arkhipova, N.A., and Vasin, N.Ya., Thalamocortical Projections and Genesis of Synchronous Spindle-Like Rhythmicity in EEG, Fiziol. Chel., 1978, vol. 4, no. 5, p. 782.

    Google Scholar 

  58. Gorelik, G.S., Kolebaniya i volny. Vvedenie v akustiku, radiofiziku i optiku (Oscillations and Waves. Introduction into Acoustics, Radiophysics, and Optics), Moscow, 1959.

  59. Anishchenko, V.S., Determined Chaos, Sorosovskii Obrazovatel’nyi Zh., 1997, no. 6, p. 70.

  60. Anishchenko, V.S., Znakomstvo s nelineinoi dinamikoi. Lektsii sorosovskogo professora (Study of Nonlinear Dynamics, Lectures of a Soros Professor), Saratov, 2000.

  61. Demin, A.I., Paradigma dualizma. Prostranstvo — vremya. Informatsiya — energiya (Paradigm of Dualism. Space-Time. Information-Energy), Moscow, 2007.

  62. Anishchenko, V.S., Vadivasova, T.E., and Astakhov, V.V., Nelineinaya dinamika khaoticheskikh sistem. Fundamental’nye osnovy i izbrannye problemy (Nonlinear Dynamics of Chaotic Systems, Fundamental Bases and Selected Problems), Saratov, 1999.

  63. Benzi, R., Sutera, A., and Vulpiani, A., The Mechanism of Stochastic Resonance, J. Phys., 1981, vol. 14, p. L453.

    Google Scholar 

  64. Anishchenko, V.S., Slozhnye kolebaniya v prostykh sistemakh. Mekhanizmy vozniknoveniya, struktura i svoistva dinamicheskogo khaosa v radiofizicheskikh sistemakh (Complex Oscillations in Simple Systems. Mechanisms of Origin, Structure and Properties of Dynamic Chaos in Radiophysical Systems), Moscow: Nauka, 1990.

    Google Scholar 

  65. Anishchenko, V.S., Neiman, A.B., Moss, F., and Shimanskii-Gaier, L., Stochastic Resonance as a Noise-Induced Effect of an Increase in the Degree of Order, Usp. Fiz. Nauk, 1999, vol. 169, no. 1, p. 7.

    Article  Google Scholar 

  66. Ando, B., Sensors That Provide Security for People with Depressed Receptors, IEEE Inst. Meas. Mag., 2006, vol. 9, p. 58.

    Google Scholar 

  67. Bahar, S. and Moss, F., Stochastic Resonance and Synchronization in the Crayfish Caudal Photoreceptor, Math. Biosci., 2004, vol. 188, p. 81.

    Article  PubMed  Google Scholar 

  68. Hanggri, P., Stochastic Resonance in Biology. How Noise Can Enhance Detection of Weak Signals and Help Improve Biological Information Processing, Chemphyschem., 2002, vol. 3, p. 285.

    Article  Google Scholar 

  69. Hidaka, I., Nozaki, D., and Yamamoto, Y., Functional Stochastic Resonance in the Human Brain: Noise Induced Sensitization of Baroreflex System, Phys. Rev. Lett., 2000, vol. 85, p. 3740.

    Article  PubMed  CAS  Google Scholar 

  70. Hidaka, I., Ando, S., Shigematsu, H., et al., Noise-Enhanced Heart Rate and Sympathetic Nerve Responses to Oscillatory Lower Body Negative Prossure in Humans, J. Neurophysiol., 2001, vol. 86, p. 559.

    PubMed  CAS  Google Scholar 

  71. Manjarrez, E., Diez-Martinez, O., Méndez, I., and Flores, A., Stochastic Resonance in Human Electroencephalograpic Activity Elicited by Mechanical Tactile Stimuli, Neurosci. Lett., 2002, vol. 324, p. 213.

    Article  PubMed  CAS  Google Scholar 

  72. Manjarrez, E., Rojas-Piloni, G., Mendez, I., et al., Internal Stochastic Resonance in the Coherence Between Spinal and Cortical Neuronal Ensembles in the Cat, Neurosci. Lett., 2002, vol. 326, p. 93.

    Article  PubMed  CAS  Google Scholar 

  73. Moss, F., Ward, L.M., and Sannit, W.G., Stochastic Resonance and Sensory Information Processing: A Tutorial and Review of Application, Clin. Neurophysiol., 2004, vol. 115, p. 267.

    Article  PubMed  Google Scholar 

  74. Stacey, W.C. and Durand, D.M., Stochastic Resonance Improves Signal Detection in Hippocamal CA1 Neurons, J. Neurophysiol., 2000, vol. 83, p. 1394.

    PubMed  CAS  Google Scholar 

  75. Stacey, W.C. and Durand, D.M., Synaptic Noise Improves Detection of Subthreshold Signals in Hippocampal CA1 Neurons, J. Neurophysiol., 2001, vol. 86, p. 1104.

    PubMed  CAS  Google Scholar 

  76. Ward, L.M., Neiman, A., and Moss, F., Stochastic Resonance in Psychophysics and in Animal Behavior, Biol. Cybern., 2002, vol. 87, p. 91.

    Article  PubMed  Google Scholar 

  77. Yamamoto, Y., Hidaka, I., Iso-o, N, et al., Noise Induced Compensation for Postural Hypotension in Primary Autonomic Failure, Brain Res., 2002, vol. 945, p. 71.

    Article  PubMed  CAS  Google Scholar 

  78. Cordo, P., Inglis, J.T., Verschueren, S., Collins, J.J., Merfeld, D.M., Rosenblum, S., Buckley, S., and Moss, F., Noise in Human Muscle Spindles, Nature, 1996, vol. 383, p. 769.

    Article  PubMed  CAS  Google Scholar 

  79. Ivey, C., Apkarian, A.V., and Chialvo, D.R., Noise-Induced Tuning Curve Changes in Mechanoreceptors, J. Neurophysiol., 1998, vol. 79, p. 1879.

    PubMed  CAS  Google Scholar 

  80. Juusola, M. and French, A.S., The Efficiency of Sensory Information Coding by Mechanoreceptor Neurons, Neuron, 1997, vol. 18, no. 6, p. 959.

    Article  PubMed  CAS  Google Scholar 

  81. Fallon, J.B., Carr, R.W., and Morgan, D.L., Stochastic Resonance in Muscle Receptors, J. Neurophysiol., 2004, vol. 91, p. 2429.

    Article  PubMed  Google Scholar 

  82. Martinez, L., Perez, T., Mirasso, C.R., and Manjarrez, E., Stochastic Resonance in the Motor System: Effect of Noise on the Monosynaptic Reflex Pathway of the Cat Spinal Cord, J. Neurophysiol., 2007, vol. 97, p. 4007.

    Article  PubMed  Google Scholar 

  83. Collins, J.J., Imhoff, T.T., and Grigg, P., Noise Mediated Enhancements and Decrements in Human Tactile Sensation, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 1997, vol. 56, p. 923.

    CAS  Google Scholar 

  84. Dhruv, N.T., Niemi, J.B., Harry, J.D., et al., Enhancing Tactile Sensation in Older Adults with Electrical Noise Stimulation, Neuro-Report, 2002, vol. 13, p. 597.

    Google Scholar 

  85. Liu, W., Lipsitz, L.A., Montero-Odasso, M., et al., Noise-Enhanced Vibrotactile Sensitivity in Older Adults Patients with Stroke, and Patients with Diabetic Neuropathy, Arch. Phys. Med. Rehabil., 2002, vol. 83, p. 171.

    Article  PubMed  Google Scholar 

  86. Richardson, K.A., Imhoff, T.T., Grigg, P., and Colling, J.J., Using Electrical Noise to Enhance the Ability of Humans to Detect Subthreshold Mechanical Cutaneous Stimuli, Chaos, 1998, vol. 8, p. 599.

    Article  PubMed  Google Scholar 

  87. Winterer, G., Ziller, M., Dorn, H., et al., Cortical Activation, Signal-To-Noise Ratio and Stochastic Resonance during Information Processing in Man, Clin. Neurophysiol., 1999, vol. 110, p. 1193.

    Article  PubMed  CAS  Google Scholar 

  88. Brouwer, B. and Ashby, P., Corticospinal Projections to Lower Limb Motoneurons in Man, Exp. Brain Res., 1992, vol. 89, p. 649.

    Article  PubMed  CAS  Google Scholar 

  89. Carmena, J.M., Lebedev, M.A., Henriquez, C.S., and Nicolelis, M.A.L., Stable Ensemble Performance with Single-Neuron Variability During Reaching Movements in Primates, J. Neurosci., 2005, vol. 25, no. 46, p. 10712.

    Article  PubMed  CAS  Google Scholar 

  90. Cohen, D. and Nicolelis, M.A., Reduction of Single-Neuron Firing Uncertainty by Cortical Ensembles During Motor Skill Learing, J. Neurosci., 2004, vol. 24, no. 14, p. 3574.

    Article  PubMed  CAS  Google Scholar 

  91. Paz, R. and Vaadia, E., Learning-Induced Improvement in Encoding and De-Coding of Specific Movement Directions by Neurons in the Primary Motor Cortex, PLoS Biol., 2004, vol. 2, no. 2, p. 264.

    Article  Google Scholar 

  92. Narayanan, N.S., Kimichi, E.Y., and Laubach, M., Redundancy and Synergy of Neuronal Ensembles in Motor Cortex, J. Neurosci., 2005, vol. 25, no. 17, p. 4207.

    Article  PubMed  CAS  Google Scholar 

  93. Korkh, A.Ya., Body Stability during Pistol Shooting and Some Opportunities for Improving It (Experimental Study):, Extended Abstract of Cand. Sci. (Ped.) Dissertation, Moscow, 1965.

  94. Gurfinkel’, V.S., Kots, Ya.M., and Shik, M.L., Regulyatsiya pozy cheloveka (Regulation of Human Postures), Moscow: Nauka, 1965.

    Google Scholar 

  95. Sumner, P., Nachev, P., Morris, P., et al., Human Medial Frontal Cortex Mediated Unconscious Inhibition of Voluntary Action, Neuron, 2007, vol. 54, no. 5, p. 697.

    Article  PubMed  CAS  Google Scholar 

  96. Kargo, W.J. and Nitz, D.A., Improvements in the Signal-To-Noise Ratio of Motor Cortex Cells Distinguish Early Versus Late Phases of Motor Skill Learning, J. Neurosci., 2004, vol. 24, no. 24, p. 5560.

    Article  PubMed  CAS  Google Scholar 

  97. Enoka, R.M., Burnett, R.A., Graves, A.E., et al., Taskand Age-Dependent Variations in Steadiness, Prog. Brain Res., 1999, vol. 123, p. 389.

    Article  PubMed  CAS  Google Scholar 

  98. Laidlaw, D.H., Bilodeau, M., and Enoka, R.H., Steadiness Is Reduced and Motor Unit Discharge Is More Variable in Old Adults, Muscle Nerve, 2000, vol. 23, p. 600.

    Article  PubMed  CAS  Google Scholar 

  99. Jones, E., Hamilton, A.F., and Wolpert, D.M., Sources of Signal-Dependent Noise During Isometric Force Production, J. Neurophysiol., 2002, vol. 88, no. 3, p. 1533.

    PubMed  Google Scholar 

  100. Hamilton, A.F., Jones, K.E., and Wolpert, D.M., The Scaling of Motor Noise with Muscle Strength and Motor Unit Number in Humans, Exp. Brain Res., 2004, vol. 157, no. 4, p. 417.

    Article  PubMed  Google Scholar 

  101. Todd, G., Butler, J.E., Gandevia, S.C., and Taylor, J.L., Decreased Input to the Motor Cortex Excitability, Clin. Neurophysiol., 2006, vol. 117, no. 11, p. 2496.

    Article  PubMed  Google Scholar 

  102. Prigogine, I. and Stengers, I., Order Out of Chaos, New York: Bantam, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Safronov, 2009, published in Fiziologiya Cheloveka, 2009, Vol. 35, No. 3, pp. 53–63.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safronov, V.A. Chaotic and ordered processes mediating the knee-jerk reflex. Hum Physiol 35, 306–315 (2009). https://doi.org/10.1134/S0362119709030062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119709030062

Keywords

Navigation