Skip to main content
Log in

Specificity of recognition of fragmented images in seven- to eight-year-old children: Analysis of event-related potentials

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The topography and parameters of event-related potentials (ERPs) recorded during the presentation of incomplete images with different fragmentation were analyzed in seven- to eight-year-old children. The degree and mode of the involvement of different cortical zones at different stages of analysis and processing of fragmented images were determined. It was found in children that the prefrontal cortical areas were involved in the recognition of incomplete images in the same way as in adults. Age-related differences manifested themselves in a lower intensity of the slow positive complex in children, reflecting the decision-making and information retention processes required for the preparation of an answer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerlach, C., Aaside, C.T., Humphreys, G.W., et al., Brain Activity Related to Integrative Processes in Visual Object Recognition: Bottom-up Integration and the Modulatory Influence of Stored Knowledge, Neuropsychologia, 2002, vol. 40, p. 1254.

    CAS  Google Scholar 

  2. Sehatpour, P., Molholm, S., Javitt, D.C., and Foxe, J.J., Spatiotemporal Dynamics of Human Object Recognition Processing: An Integrated High-density Electrical Mapping and Functional Imaging Study of “Closure” Processes, NeuroImage, 2006, vol. 29, p. 605.

    Article  PubMed  Google Scholar 

  3. Doniger, G.M., Foxe, J.J., Murray, M.M., et al., Impaired Visual Object Recognition and Dorsal/Ventral Stream Interaction in Schizophrenia, Arch. Gen. Psychiatry, 2002, vol. 59, p. 1011.

    Article  PubMed  Google Scholar 

  4. Doniger, G.M., Foxe, J.J., Schroeder, Ch.E., et al., Visual Perceptual Learning in Human Object Recognition Areas: a Repetition Priming Study Using High-Density Electrical Mapping, NeuroImage, 2001, vol. 13, p. 305.

    Article  PubMed  CAS  Google Scholar 

  5. Doniger, G.M., Foxe, J.J., Murray, M.M., et al., Activation Timecourse of Ventral Visual Stream Object-recognition Areas: High Density Electrical Mapping of Perceptual Closure Processes, J. Cogn. Neurosci., 2000, vol. 12, p. 615.

    Article  PubMed  CAS  Google Scholar 

  6. Cycowicz, Y.M. and Friedman, D., ERP Recordings During a Picture Fragment Completion Task: Effects of Memory Instructions, Cogn. Brain Res., 1999, vol. 8, p. 271.

    Article  CAS  Google Scholar 

  7. Viggiano, M.R. and Kutas, M., Overt and Covert Identification of Fragmented Objects Inferred from Performance and Electrophysiological Measures, J. Experim. Psychol. General, 2000, vol. 129, no. 1, p. 107.

    Article  CAS  Google Scholar 

  8. Viggiano, M.R. and Kutas, M., The Covert Interplay Between Perception and Memory: Event-related Potential Evidence, EEG and Clin. Neurophysiol., 1998, vol. 108, p. 435.

    CAS  Google Scholar 

  9. Stuss, D.T., Picton, T. W., Cerri, A.M., et al., Perceptual Closure and Object Identification: Electrophysiological Responses to Incomplete Pictures, Brain Cogn., 1992, vol. 19, p. 253.

    Article  PubMed  CAS  Google Scholar 

  10. Farber, D.A. and Petrenko, N.E., Recognition of Fragmented Images and Mechanisms of Memory, Fiziol. Chel., 2008, vol. 34, no. 1, p. 5.

    CAS  Google Scholar 

  11. Sehatpour, P., Molholm, S., Schwartz, T.H., et al., A Human Intracranial Study of Long-Range Oscillatory Coherence across a Frontal-Occipital-Hippocampal Brain Network during Visual Object Processing, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 11, p. 4399.

    Article  PubMed  CAS  Google Scholar 

  12. Farber, D.A., Semenova, L.K., Alferova, V.V., et al., Strukturno-funktsional’naya organizatsiya razvivayushchegosya mozga (Structural-Functional Organization of the Developing Brain), Leningrad: Nauka, 1990.

    Google Scholar 

  13. Farber, D.A., Formation of Visual Perception in Ontogeny: Psychophysiological Analysis, Mir Psikhol., 2003, no. 2, p. 114.

  14. Tsekhmistrenko, T.A. and Vasil’eva, V.A., Structural Transformations of Associative Cortex as the Morphological Base of the Development of Human Cognitive Functions from Birth to 20 Years of Age, Fiziol. Chel., 2001, vol. 27, no. 5, p. 41.

    CAS  Google Scholar 

  15. Polonskaya, N.N., Neiropsikhologicheskaya diagnostika detei mladshego shkol’nogo vozrasta (Neuropsychological Diagnostic Examination of Primary School Children), Moscow: Academia, 2007.

    Google Scholar 

  16. Cycowicz, Y.M., Friedman, D., Snodgrass, J., and Rothstein, M.A., A Developmental Trajectory in Implicit Memory Is Revealed by Picture Fragment Completion, Memory, 2000, vol. 8, no. 1, p. 19.

    Article  PubMed  CAS  Google Scholar 

  17. Snodgrass, J.G. and Corwin, J., Perceptual Identification Thresholds for 150 Fragmented Pictures from the Snodgrass and Vanderwart Picture Set, Percept. Motor Skills, 1988, vol. 67, p. 3.

    PubMed  CAS  Google Scholar 

  18. Donchin, E., A Multivariate Approach to the Analysis of Average Evoked Potentials, IEEE Trans. BioMed. Engineer., 1966, vol. 13, no. 3, p. 132.

    Google Scholar 

  19. Foxe, J.J. and Simpson, G.V., Flow of Activation from V1 to Frontal Cortex in Humans. A Framework for Defining “Early” Visual Processing, Exp. Brain Res., 2002, vol. 142, p. 139.

    Article  PubMed  Google Scholar 

  20. Beteleva, T.G., Changes in the Event-Related Potentials in a Picture Classification Task, Fiziol. Chel., 1998, vol. 24, no. 4, p. 64 [Hum. Physiol. (Emgl. Transl.), 1998, vol. 24, no. 4, p. 444].

    CAS  Google Scholar 

  21. Farber, D.A. and Beteleva, T.G., Regional and Hemispheric Specialization of Visual Recognition in the Cerebral Cortex: Age-Specific Aspect, Fiziol. Chel., 1999, vol. 25, no. 1, p. 15 [Hum. Physiol. (Emgl. Transl.), 1999, vol. 25, no. 1, p. 9].

    CAS  Google Scholar 

  22. Beteleva, T.G. and Farber, D.A., Role of the Frontal Cortical Areas in the Analysis of Visual Stimuli at Conscious and Unconscious Levels, Fiziol. Chel., 2002, vol. 28, no. 5, p. 5 [Hum. Physiol. (Emgl. Transl.), 2002, vol. 28, no. 5, p. 511].

    CAS  Google Scholar 

  23. Farber, D.A. and Beteleva, T.G., Formation of the System of Visual Perception in Ontogeny, Fiziol. Chel., 2005, vol. 31, no. 5, p. 26 [Hum. Physiol. (Emgl. Transl.), 2005, vol. 31, no. 5, p. 505].

    CAS  Google Scholar 

  24. Hansen, J.C. and Hillyard, S.A., Endogenous Brain Potentials Associated with Selective Auditory Attention, EEG Clin. Neurophysiol., 1980, vol. 49, no. 3–4, p. 277.

    Article  CAS  Google Scholar 

  25. Wijers, A.A., Otten, L.I., and Feenstra, S., Brain Potentials during Selective Attention, Memory Search, and mental Rotation, Psychophysiol., 1989, vol. 26, no. 4, p. 452.

    Article  CAS  Google Scholar 

  26. Novikova, L.A., Zislina, N.N., Tolstova, V.A., and Fil’chikova, L.I., Study of Visual Perception Using Event-Related Potentials: Perception of Spatially Structured Stimuli, Fiziol. Chel., 1979, vol. 5, no. 3, p. 535.

    Google Scholar 

  27. Novikova, L.A. and Filchikova, L.I., Human Event-Related Potentials Generated during Perception of Simple and Complex Visual Stimuli, Zh. Vyssh. Nervn. Deyat., 1976, vol. 26, issue 6, p. 1244.

    CAS  Google Scholar 

  28. Schendan, H.E., Ganis, G., and Kutas, M., Neurophysiological Evidence for Visual Perceptual Categorization of Words and Faces within 150 ms, Psychophysiology, 1998, vol. 35, p. 240.

    Article  PubMed  CAS  Google Scholar 

  29. Kostandov, E.A., Mekhanizmy deyatel’nosti mozga cheloveka. Ch. 1. Neirofiziologiya cheloveka (Mechanisms of Human Brain Activity. Part 1. Human neurophysiology), Bekhtereva, N.P., Ed., Leningrad: Nauka, 1988, p. 491.

    Google Scholar 

  30. Kok, A., On the Utility of P3 Amplitude as a Measure of processing Capacity, Psychophysiolofy, 2001, vol. 38, no. 3, p. 557.

    Article  CAS  Google Scholar 

  31. Farber, D.A., Beteleva, T.G., and Ignat’eva, I.S., Functional Organization of the Brain during the Operation of Working Memory, Fiziol. Chel., 2004, vol. 30, no. 2, p. 5 [Hum. Physiol. (Emgl. Transl.), 2004, vol. 30, no. 2, p. 129].

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.A. Farber, N.E. Petrenko, 2009, published in Fiziologiya Cheloveka, 2009, Vol. 35, No. 3, pp. 5–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farber, D.A., Petrenko, N.E. Specificity of recognition of fragmented images in seven- to eight-year-old children: Analysis of event-related potentials. Hum Physiol 35, 259–266 (2009). https://doi.org/10.1134/S0362119709030013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119709030013

Keywords

Navigation