Skip to main content
Log in

Relationships of inflammatory activity with biochemical parameters of the blood and sympathovagal balance of young athletes

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Results of numerous studies show that a specific combination of biochemical parameters is formed in a trained body. The systemic inflammatory activity is supposed to be an integral factor involved in the formation of such a specific biochemical profile. The measurements of biochemical parameters of athletes’ blood and sympathovagal balance (via the assessment of the heart rate variability) performed in this study show that a decreased level of C-reactive protein is correlated with the count of red blood cells, hematocrit, levels of neutrophils and lymphocytes, total concentration of cholesterol and its concentration in low-density lipoproteins, activity of creatine phosphokinase, time of heart rate recovery from 170 to 120 beats/min (the HR170-120 index), and the LF/HF ratio (regarded as a marker of the sympathovagal balance). Hence, a decreased inflammatory activity can be involved in the regulation of some biochemical parameters and affect the sympathovagal balance of a trained body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyadejiev, N. and Taralov, Z., Red Blood Cell Variables in Highly Trained Pubescent Athletes: A Comparative Analysis, Br. J. Sports Med., 2000, vol. 34, p. 200.

    Article  Google Scholar 

  2. Brun, J.F., Bouchahda, C., Chaze, D., et al., The Paradox of Hematocrit in Exercise Physiology: Which Is the “Normal” Range from an Hemorheologist’s Viewpoint? Clin. Hemorheol. Microcirc., 2000, vol. 22, no. 4, p. 287.

    PubMed  CAS  Google Scholar 

  3. Letcher, R.L., Piekering, T.G., Chien, S., and Laragh, I.H., Effects of Exercise on Plasma Viscosity in Athletes and Sedentary Normal Subjects, Clin Cardiol., 1981, vol. 4, no. 4, p. 171.

    Article  Google Scholar 

  4. Vikulov, A.D., Mel’nikov, A.A., and Bagrakova, S.V., Erythrocyte Aggregation in Athletes, Fiziol. Chel., 2003, vol. 29, no. 4, p. 76, [Hum. Physiol. (Engl. Transl.), 2003, vol. 29, no. 4, p. 357].

    CAS  Google Scholar 

  5. Tolfrey, K., Campbell, I.G., and Batterham, A.M., Exercise Training Induced Alterations in Prepubertal Children’s Lipid-Lipoprotein Profile. Med. Sci. Sprots Exerc., 1998, vol. 30, p. 1684.

    Article  CAS  Google Scholar 

  6. Katona, P.G., McLean, M., Dighton, D.H., and Guz, A., Sympathetic and Parasympathetic Cardiac Control in Athletes and Nonathletes at Rest, J. Appl. Physiol., 1982, vol. 52, p. 1652.

    PubMed  CAS  Google Scholar 

  7. Elenkov, I.J., Wilder, R.L., Chrousos, G.P., and Vizi, E.S., The Sympathetic Nerve—An Integrative Interface between Two Supersystems: The Brain and the Immune System, Pharmacol. Rev., 2000, vol. 52, p. 595.

    PubMed  CAS  Google Scholar 

  8. Wellen, K.E. and Hotamisligil, G.S., Inflammation, Stress, and Diabetes, J. Clin. Invest., 2005, vol. 115, no. 5, p. 1111.

    Article  PubMed  CAS  Google Scholar 

  9. Libby, P., Ridker, P.M., and Maseri, A., Inflammation and Atherosclerosis, Circulation, 2002, vol. 105, p. 1135.

    Article  PubMed  CAS  Google Scholar 

  10. Khovidhunkit, W., Kim, M.S., Memon, R.A., et al., Effects of Infection and Inflammation on Lipids and Lipoprotein Metabolism: Mechanisms and Consequences to the Host, J. Lipid Res., 2004, vol. 45, p. 1169.

    Article  PubMed  CAS  Google Scholar 

  11. Emerson, S.J., Hemopoiesis: Development of Blood Cells, in Schiffman, F.J., Ed., Hematologic Pathophysiology, Philadelphia: Lippincott-Raven, 1998. Translated under the title Patofiziologiya krovi, Moscow: BINOM, 2000.

    Google Scholar 

  12. Abramson, J.L. and Vaccarino, V., Relationship between Physical Activity and Inflammation among Apparently Healthy Middle-Aged and Older US Adults, Arch. Intern. Med., 2002, vol. 162, p. 1286.

    Article  PubMed  Google Scholar 

  13. Pepys, M.B. and Hirschfield, G.M., C-Reactive Protein: A Critical Update, J. Clin. Invest., 2003, vol. 111, p. 1805.

    Article  PubMed  CAS  Google Scholar 

  14. Imai, K., Sato, H., Hori, M., et al., Vagally Mediated Heart Rate Recovery after Exercise Is Accelerated in Athletes but Blunted in Patients with Chronic Heart Failure, J. Am. Coll. Cardiol., 1994, vol. 24, p. 1529.

    Article  PubMed  CAS  Google Scholar 

  15. Goldberger, J., Sympathovagal Balance: How Should We Measure It? Am. J. Physiol. Heart Circ. Physiol., 1999, vol. 276, p. H1273.

    CAS  Google Scholar 

  16. Baevskii, R.M., Analysis of Heart Rate Variability in Space Medicine, Fiziol. Chel., 2002, vol. 28, no. 2, p. 70 [Hum. Physiol. (Engl. Transl.), 2002, vol. 28, no. 2, p. 202].

    CAS  Google Scholar 

  17. Eckberg, D.L., Sympathovagal Balance: A Critical Appraisal, Circulation, 1997, vol. 96, p. 3224.

    PubMed  CAS  Google Scholar 

  18. Heilbronn, L.K., Noakes, M., and Clifton, P.M., Energy Restriction and Weight Loss on Very-Low-Fat Diets Reduce C-Reactive Protein Concentrations in Obese, Healthy Women, Arterioscler. Thromb. Vasc. Biol., 2001, vol. 21, p. 968.

    PubMed  CAS  Google Scholar 

  19. Bastard, J.P., Jardel, C., Bruckert, E., et al., Elevated Levels of Interleukin-6 Are Reduced in Serum and Subcutaneous Adipose Tissue of Obese Women after Weight Loss, J. Clin. Endocrinol. Metab., 2000, vol. 85, p. 3338.

    Article  PubMed  CAS  Google Scholar 

  20. Okita, K., Nishijima, H., Murakami, T., et al., Can Exercise Training with Weight Loss Lower Serum C-Reactive Protein Levels? Arterioscler. Thromb. Vasc. Biol., 2004, vol. 24, p. 1868.

    Article  PubMed  CAS  Google Scholar 

  21. Petersen, A.M. and Pedersen, B.K., The Antiinflammatory Effect of Exercise, J. Appl. Physiol., 2005, vol. 98, p. 1154.

    Article  PubMed  CAS  Google Scholar 

  22. Semple, S.J., Smith, L.L., and McKune, A.J., Serum Concentrations of C Reactive Protein, α1 Antitrypsin, and Complement (C3, C4, C1 Esterase Inhibitor) before and during the Vuelta a Espańa, Br. J. Sports Med., 2006, vol. 40, p. 124.

    Article  PubMed  CAS  Google Scholar 

  23. Zaldivar, F., Wang-Rodriguez, J., Nemet, D., et al., Constitutive Pro-and Antiinflammatory Cytokine and Growth Factor Response to Exercise in Leukocytes, J. Appl. Physiol., 2006, vol. 100, p. 1124.

    Article  PubMed  CAS  Google Scholar 

  24. Tulppo, M.P., Hautala, A.J., and Mäkikallio, T.H., Effects of Aerobic Training on Heart Rate Dynamics in Sedentary Subjects, J. Appl. Physiol., 2003, vol. 95, p. 364.

    PubMed  Google Scholar 

  25. Belova, E.L., Individual Typological Features of Psychophysiological Adaptation in Athletes, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Yaroslavl, 2005.

  26. Watanabe, Y., Takanashi, A., and Shimazu, T., Neural Control of Biosynthesis and Secretion of Serum Transferrin in Perfused Rat Liver, Biochem, J., 1990, vol. 267, p. 545.

    CAS  Google Scholar 

  27. Yu, H.-J., Lin, B.-R., Lee, H.-S., et al., Sympathetic Vesicovascular Reflex Induced by Acute Urinary Retention Evokes Proinflammatory and Proapoptotic Injury in Rat Liver, Am. J. P. Renal Physiol., 2005, vol. 288, p. F1005.

    Article  CAS  Google Scholar 

  28. Convertino, V.A. Blood Volume: Its Adaptation to Endurance Training, Med. Sci. Sports Exerc., 1991, vol. 23, p. 1338.

    PubMed  CAS  Google Scholar 

  29. Eisenmann, J.C., Womack, C.J., and Reeves, M.J., Blood Lipids in Young Distance Runners, Med. Sci. Sports Exerc., 2001, vol. 33, p. 661.

    Article  Google Scholar 

  30. Nijm, J., Wikby, A., and Tompa, A., Circulating Levels of Proinflammatory Cytokines and Neutrophil-Platelet Aggregates in Patients with Coronary Artery Disease, Am. J. Cardiol., 2005, vol. 95, p. 452.

    Article  PubMed  CAS  Google Scholar 

  31. Steensberg, A., Toft, A.D., and Brunnsgaard, H., Strenuous Exercise Decreases the Percentage of Type 1 T Cells in the Circulation, J. Appl. Physiol., 2001, vol. 91, p. 1708.

    PubMed  CAS  Google Scholar 

  32. Pedersen, B.K. and Hoffman-Goettz, L., Exercise and the Immune System: Regulation, Integration, and Adaptation, Physiol. Rev., 2000, vol. 80, no. 3, p. 1055.

    PubMed  CAS  Google Scholar 

  33. Makarova, G.A. and Loktev, S.A., Kartina krovi i funktsional’noe sostoyanie organisma sportsmenov (Blood Pattern and the Functional State of Athletes), Krasnodar, 1990.

  34. Garkavi, L.Kh., Kvakina, E.B., and Ukolova, M.A., Adaptatsionnye reaktsii i resistentnost’ organisma (Adaptive Reactions and the Resistance of the Body), Rostov-on-Don, 1977.

  35. Sutton, D. and Schmid-Schonbein, G., Evaluation of Microvascular Perfusion: The Contribution of Different Blood Cells, in Leukocytes and Endothelial Interactions, Barcelona: Prous Science, 1995, p. 31.

    Google Scholar 

  36. Mackinnon, L., Overtraining Effects on Immunity and Performance in Athletes, Immunol. Cell Biol., 2000, vol. 78, p. 502.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Mel’nikov, A.A. Kylosov, A.D. Vikulov, 2007, published in Fiziologiya Cheloveka, 2007, Vol. 33, No. 5, pp. 124–132.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mel’nikov, A.A., Kylosov, A.A. & Vikulov, A.D. Relationships of inflammatory activity with biochemical parameters of the blood and sympathovagal balance of young athletes. Hum Physiol 33, 624–631 (2007). https://doi.org/10.1134/S0362119707050143

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119707050143

Keywords

Navigation